865 resultados para Associative Classifiers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A análise forense de documentos é uma das áreas das Ciências Forenses, responsável pela verificação da autenticidade dos documentos. Os documentos podem ser de diferentes tipos, sendo a moeda ou escrita manual as evidências forenses que mais frequentemente motivam a análise. A associação de novas tecnologias a este processo de análise permite uma melhor avaliação dessas evidências, tornando o processo mais célere. Esta tese baseia-se na análise forense de dois tipos de documentos - notas de euro e formulários preenchidos por escrita manual. Neste trabalho pretendeu-se desenvolver técnicas de processamento e análise de imagens de evidências dos tipos referidos com vista a extração de medidas que permitam aferir da autenticidade dos mesmos. A aquisição das imagens das notas foi realizada por imagiologia espetral, tendo-se definidas quatro modalidades de aquisição: luz visível transmitida, luz visível refletida, ultravioleta A e ultravioleta C. Para cada uma destas modalidades de aquisição, foram também definidos 2 protocolos: frente e verso. A aquisição das imagens dos documentos escritos manualmente efetuou-se através da digitalização dos mesmos com recurso a um digitalizador automático de um aparelho multifunções. Para as imagens das notas desenvolveram-se vários algoritmos de processamento e análise de imagem, específicos para este tipo de evidências. Esses algoritmos permitem a segmentação da região de interesse da imagem, a segmentação das sub-regiões que contém as marcas de segurança a avaliar bem como da extração de algumas características. Relativamente as imagens dos documentos escritos manualmente, foram também desenvolvidos algoritmos de segmentação que permitem obter todas as sub-regiões de interesse dos formulários, de forma a serem analisados os vários elementos. Neste tipo de evidências, desenvolveu-se ainda um algoritmo de análise para os elementos correspondentes à escrita de uma sequência numérica o qual permite a obtenção das imagens correspondentes aos caracteres individuais. O trabalho desenvolvido e os resultados obtidos permitiram a definição de protocolos de aquisição de imagens destes tipos de evidências. Os algoritmos automáticos de segmentação e análise desenvolvidos ao longo deste trabalho podem ser auxiliares preciosos no processo de análise da autenticidade dos documentos, o qual, ate então, é feito manualmente. Apresentam-se ainda os resultados dos estudos feitos às diversas evidências, nomeadamente as performances dos diversos algoritmos analisados, bem como algumas das adversidades encontradas durante o processo. Apresenta-se também uma discussão da metodologia adotada e dos resultados, bem como de propostas de continuação deste trabalho, nomeadamente, a extração de características e a implementação de classificadores capazes aferir da autenticidade dos documentos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Neuroscience Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Sistemas de Bioengenharia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis is the study of a tool that can help analysts in finding sequential patterns. This tool will have a focus on financial markets. A study will be made on how new and relevant knowledge can be mined from real life information, potentially giving investors, market analysts, and economists new basis to make informed decisions. The Ramex Forum algorithm will be used as a basis for the tool, due to its ability to find sequential patterns in financial data. So that it further adapts to the needs of the thesis, a study of relevant improvements to the algorithm will be made. Another important aspect of this algorithm is the way that it displays the patterns found, even with good results it is difficult to find relevant patterns among all the studied samples without a proper result visualization component. As such, different combinations of parameterizations and ways to visualize data will be evaluated and their influence in the analysis of those patterns will be discussed. In order to properly evaluate the utility of this tool, case studies will be performed as a final test. Real information will be used to produce results and those will be evaluated in regards to their accuracy, interest, and relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The life of humans and most living beings depend on sensation and perception for the best assessment of the surrounding world. Sensorial organs acquire a variety of stimuli that are interpreted and integrated in our brain for immediate use or stored in memory for later recall. Among the reasoning aspects, a person has to decide what to do with available information. Emotions are classifiers of collected information, assigning a personal meaning to objects, events and individuals, making part of our own identity. Emotions play a decisive role in cognitive processes as reasoning, decision and memory by assigning relevance to collected information. The access to pervasive computing devices, empowered by the ability to sense and perceive the world, provides new forms of acquiring and integrating information. But prior to data assessment on its usefulness, systems must capture and ensure that data is properly managed for diverse possible goals. Portable and wearable devices are now able to gather and store information, from the environment and from our body, using cloud based services and Internet connections. Systems limitations in handling sensorial data, compared with our sensorial capabilities constitute an identified problem. Another problem is the lack of interoperability between humans and devices, as they do not properly understand human’s emotional states and human needs. Addressing those problems is a motivation for the present research work. The mission hereby assumed is to include sensorial and physiological data into a Framework that will be able to manage collected data towards human cognitive functions, supported by a new data model. By learning from selected human functional and behavioural models and reasoning over collected data, the Framework aims at providing evaluation on a person’s emotional state, for empowering human centric applications, along with the capability of storing episodic information on a person’s life with physiologic indicators on emotional states to be used by new generation applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this research is to investigate if a celebrity can be a mediator between two brands so that a negative event happening to one brand can spill over to a completely unrelated brand, which shares with the first brand only the celebrity endorser. Even though celebrity endorsement is a popular marketing strategy and celebrities often endorse multiple brands, so far there has not been any systematic study on this topic. Drawing on Associative Network Theory and the Meaning Transfer Model as theoretical framework, this research finds out that negative publicity about a brand can spill over and thereby not only hurt consumers’ attitude toward the celebrity endorser but also toward a second brand that is endorsed by the same celebrity. An unexpected finding is that celebrities can act as a protective shield for brands by weakening the direct impact of negative publicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Educação Especial (área de especialização em Dificuldades de Aprendizagem Específicas)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente investigação examina a importância do recess enquanto parte integrante do quotidiano escolar, deslindando o seu contributo ao nível da aprendizagem, da capacidade de trabalho e do sucesso académico. A premissa de que a aprendizagem dos alunos sai beneficiada pela introdução de pausas no seio de longos períodos de trabalho intelectual, é comum a um sem número de teorias gizadas na literatura que, no entanto, deixam por esclarecer se o benefício provém do conteúdo da pausa, ou meramente da sua existência. De forma a contribuir para este debate, centra-se a presente investigação numa abordagem alternativa: partindo do pressuposto de que as características individuais dos alunos, nomeadamente o estatuto sociométrico, a idade e o género, condicionam a forma como ocupam o tempo que passam no recreio, constituiu-se uma amostra, seleccionada mediante a aplicação de um questionário sociométrico, e levou-se a cabo a observação das actividades por ela desenvolvidas no recreio e da performance por ela conseguida na sala de aula, antes e depois do intervalo. Concluiu-se que a forma como as crianças vivem o recess é fortemente influenciada pelas três variáveis chave (status sociométrico, género e nível de ensino), e que o conteúdo do intervalo, mais do que a sua simples existência, é determinante para a subsequente atitude na sala de aula. Ressalve-se, em particular, que os alunos cuja actividade no recreio se revela fisicamente intensa e socialmente Cooperativa e Associativa, por excelência os alunos Populares, experimentam maiores dificuldades de atenção e concentração no regresso à aula do que aqueles que vivem um recess marcado por níveis moderados de actividade física e por um comportamento social menos expansivo. Mais, constatou-se que a dimensão social do comportamento durante o recess monopoliza o seu conteúdo influenciando, como tal, o desempenho na sala de aula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let A be a semiprime 2 and 3-torsion free non-commutative associative algebra. We show that the Lie algebra Der(A) of(associative) derivations of A is strongly non-degenerate, which is a strong form of semiprimeness for Lie algebras, under some additional restrictions on the center of A. This result follows from a description of the quadratic annihilator of a general Lie algebra inside appropriate Lie overalgebras. Similar results are obtained for an associative algebra A with involution and the Lie algebra SDer(A) of involution preserving derivations of A

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Early detection and treatment of colorectal adenomatous polyps (AP) and colorectal cancer (CRC) is associated with decreased mortality for CRC. However, accurate, non-invasive and compliant tests to screen for AP and early stages of CRC are not yet available. A blood-based screening test is highly attractive due to limited invasiveness and high acceptance rate among patients. AIM: To demonstrate whether gene expression signatures in the peripheral blood mononuclear cells (PBMC) were able to detect the presence of AP and early stages CRC. METHODS: A total of 85 PBMC samples derived from colonoscopy-verified subjects without lesion (controls) (n = 41), with AP (n = 21) or with CRC (n = 23) were used as training sets. A 42-gene panel for CRC and AP discrimination, including genes identified by Digital Gene Expression-tag profiling of PBMC, and genes previously characterised and reported in the literature, was validated on the training set by qPCR. Logistic regression analysis followed by bootstrap validation determined CRC- and AP-specific classifiers, which discriminate patients with CRC and AP from controls. RESULTS: The CRC and AP classifiers were able to detect CRC with a sensitivity of 78% and AP with a sensitivity of 46% respectively. Both classifiers had a specificity of 92% with very low false-positive detection when applied on subjects with inflammatory bowel disease (n = 23) or tumours other than CRC (n = 14). CONCLUSION: This pilot study demonstrates the potential of developing a minimally invasive, accurate test to screen patients at average risk for colorectal cancer, based on gene expression analysis of peripheral blood mononuclear cells obtained from a simple blood sample.