446 resultados para Ashik Tephra
Resumo:
The steeply dipping, isoclinally folded early Precambrian (Archean) Berry Creek Metavolcanic Complex comprises primary to resedimented pyroclastic, epiclastic and autoclastic deposits. Tephra erupted from central volcanic edifices was dumped by mass flow mechanisms into peripheral volcanosedimentary depressions. Sedimentation has been essentially contemporaneous with eruption and transport of tephra. The monolithic to heterolithic tuffaceous horizons are interpreted as subaerial to subaqueous pumice and ash flows, secondary debris flows, lahars, slump deposits and turbidites. Monolithic debris flows, derived from crumble breccia and dcme talus, formed during downslope collapse and subsequent gravity flowage. Heterolithic tuff, lahars and lava flow morphologies suggest at least temporary emergence of the edifice. Local collapse may have accompanied pyroclastic volcanism. The tephra, produced by hydromagmatic to magmatic eruptions, were rapidly transported, by primary and secondary mechanisms, to a shallow littoral to deep water subaqueous fan developed upon the subjacent mafic metavolcanic platform. Deposition resulted from traction, traction carpet, and suspension sedimentation from laminar to turbulent flows. Facies mapping revealed proximal (channel to overbank) to distal facies epiclastics (greywackes, argillite) intercalated with proximal vent to medial fan facies crystal rich ash flows, debris flows, bedded tuff and shallow water to deep water lava flows. Framework and matrix support debris flows exhibit a variety of subaqueous sedimentary structures, e.g., coarse tail grading, double grading, inverse to normal grading, graded stratified pebbly horizons, erosional channels. Pelitic to psammitic AE turbidites also contain primary stru~tures, e.g., flames, load casts, dewatering pipes. Despite low to intermediate pressure greenschist to amphibolite grade metamorphism and variably penetrative deformation, relicts of pumice fragments and shards were recognized as recrystallized quartzofeldspathic pseudomorphs. The mafic to felsic metavolcanics and metasediments contain blasts of hornblende, actinolite, garnet, pistacitic epidote, staurolite, albitic plagioclase, and rarely andalusite and cordierite. The mafic metavolcanics (Adams River Bay, Black River, Kenu Lake, Lobstick Bay, Snake Bay) display _holeiitic trends with komatiitic affinities. Chemical variations are consistent with high level fractionation of olivine, plagioclase, amphibole, and later magnetite from a parental komatiite. The intermediate to felsic (64-74% Si02) metavolcanics generally exhibit calc-alkaline trends. The compositional discontinuity, defined by major and trace element diversity, can be explained by a mechanism involving two different magma sources. Application of fractionation series models are inconsistent with the observed data. The tholeiitic basalts and basaltic andesites are probably derived by low pressure fractionation of a depleted (high degree of partial melting) mantle source. The depleted (low Y, Zr) calc-alkaline metavolcanics may be produced by partial melting of a geochemically evolved source, e.g., tonalitetrondhjemite, garnet amphibolite or hydrous basalt.
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 different compositional datasets and modelled the first canonical variable using a segmented regression model solely based on an observation about the scatter plots. In this paper, multiple linear regressions are applied to different datasets to confirm the validity of our proposed model. In addition to dating the unknown tephras by calibration as discussed previously, another method of mapping the unknown tephras into samples of the reference set or missing samples in between consecutive reference samples is proposed. The application of these methodologies is demonstrated with both simulated and real datasets. This new proposed methodology provides an alternative, more acceptable approach for geologists as their focus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age of unknown tephra. Kew words: Tephrochronology; Segmented regression
Resumo:
The record of deposition of tephras in Europe and the North Atlantic during the period 18.5–8.0 14C ka BP (the Last Termination and Early Holocene) is reviewed. Altogether, 34 tephras originating from four main volcanic provinces (Iceland, the Eifel district, the Massif Central and Italy) have been identified so far in geological sequences spanning this time–interval. Most of the records have been based, until very recently, on observations of visible layers of tephras. Here, we report on the potential for extending the areas over which some of the tephras can be traced by the search for layers of micro–tephra, which are not visible to the naked eye, and on the use of geochemical methods to correlate them with known tephra horizons. This approach has greatly extended the area in Northern Europe over which the Vedde Ash can be traced. The same potential exists in southern Europe, which is demonstrated for the first time by the discovery of a distinct layer of micro–tephra of the Neapolitan Yellow Tuff in a site in the Northern Apennines in Italy, far to the north of the occurrences of visible records of this tephra. The paper closes by considering the potential for developing a robust European tephrostratigraphy to underpin the chronology of records of the Last Termination and Early Holocene, thereby promoting a better understanding of the nature, timing and environmental effects of the abrupt climatic changes that characterized this period.
Resumo:
1] We apply a novel computational approach to assess, for the first time, volcanic ash dispersal during the Campanian Ignimbrite (Italy) super-eruption providing insights into eruption dynamics and the impact of this gigantic event. The method uses a 3D time-dependent computational ash dispersion model, a set of wind fields, and more than 100 thickness measurements of the CI tephra deposit. Results reveal that the CI eruption dispersed 250–300 km3 of ash over ∼3.7 million km2. The injection of such a large quantity of ash (and volatiles) into the atmosphere would have caused a volcanic winter during the Heinrich Event 4, the coldest and driest climatic episode of the Last Glacial period. Fluorine-bearing leachate from the volcanic ash and acid rain would have further affected food sources and severely impacted Late Middle-Early Upper Paleolithic groups in Southern and Eastern Europe
Resumo:
A multi-proxy study of a Holocene sediment core (RF 93-30) from the western flank of the central Adriatic, in 77 m of water, reveals a sequence of changes in terrestrial vegetation, terrigenous sediment input and benthic fauna, as well as evidence for variations in sea surface temperature spanning most of the last 7000 yr. The chronology of sedimentation is based on several lines of evidence, including AMS 14C dates of foraminifera extracted from the core, palaeomagnetic secular variation, pollen indicators and dated tephra. The temporal resolution increases towards the surface and, for some of the properties measured, is sub-decadal for the last few centuries. The main changes recorded in vegetation, sedimentation and benthic foraminiferal assemblages appear to be directly related to human activity in the sediment source area, which includes the Po valley and the eastern flanks of the central and northern Appenines. The most striking episodes of deforestation and expanding human impact begin around 3600 BP (Late Bronze Age) and 700 BP (Medieval) and each leads to an acceleration in mass sedimentation and an increase in the proportion of terrigenous material, reflecting the response of surface processes to widespread forest clearance and cultivation. Although human impact appears to be the proximal cause of these changes, climatic effects may also have been important. During these periods, signs of stress are detectable in the benthic foram morphotype assemblages. Between these two periods of increased terrigeneous sedimentation there is smaller peak in sedimentation rate around 2400BP which is not associated with evidence for deforestation, shifts in the balance between terrigenous and authigenic sedimentation, or changes in benthic foraminifera. The mineral magnetic record provides a sensitive indicator of changing sediment sources: during forested periods of reduced terrigenous input it is dominated by authigenic bacterial magnetite, whereas during periods of increased erosion, anti-ferromagetic minerals (haematite and/or goethite) become more important, as well as both paramagnetic minerals and super-paramagnetic magnetite. Analysis of the alkenone, U37k′, record provides an indication of possible changes in sea surface temperature during the period, but it is premature to place too much reliance on these inferred changes until the indirect effects of past changes in the depth of the halocline and in circulation have been more fully evaluated. The combination of methods used and the results obtained illustrate the potential value of such high resolution near-shore marine sedimentary sequences for recording wide-scale human impact, documenting the effects of this on marine sedimentation and fauna and, potentially, disentangling evidence for human activities from that for past changes in climate.
Resumo:
We examine mid- to late Holocene centennial-scale climate variability in Ireland using proxy data from peatlands, lakes and a speleothem. A high degree of between-record variability is apparent in the proxy data and significant chronological uncertainties are present. However, tephra layers provide a robust tool for correlation and improve the chronological precision of the records. Although we can find no statistically significant coherence in the dataset as a whole, a selection of high-quality peatland water table reconstructions co-vary more than would be expected by chance alone. A locally weighted regression model with bootstrapping can be used to construct a ‘best-estimate’ palaeoclimatic reconstruction from these datasets. Visual comparison and cross-wavelet analysis of peatland water table compilations from Ireland and Northern Britain show that there are some periods of coherence between these records. Some terrestrial palaeoclimatic changes in Ireland appear to coincide with changes in the North Atlantic thermohaline circulation and solar activity. However, these relationships are inconsistent and may be obscured by chronological uncertainties. We conclude by suggesting an agenda for future Holocene climate research in Ireland.
Resumo:
During April and May 2010 the ash cloud from the eruption of the Icelandic volcano Eyjafjallajökull caused widespread disruption to aviation over northern Europe. The location and impact of the eruption led to a wealth of observations of the ash cloud were being obtained which can be used to assess modelling of the long range transport of ash in the troposphere. The UK FAAM (Facility for Airborne Atmospheric Measurements) BAe-146-301 research aircraft overflew the ash cloud on a number of days during May. The aircraft carries a downward looking lidar which detected the ash layer through the backscatter of the laser light. In this study ash concentrations derived from the lidar are compared with simulations of the ash cloud made with NAME (Numerical Atmospheric-dispersion Modelling Environment), a general purpose atmospheric transport and dispersion model. The simulated ash clouds are compared to the lidar data to determine how well NAME simulates the horizontal and vertical structure of the ash clouds. Comparison between the ash concentrations derived from the lidar and those from NAME is used to define the fraction of ash emitted in the eruption that is transported over long distances compared to the total emission of tephra. In making these comparisons possible position errors in the simulated ash clouds are identified and accounted for. The ash layers seen by the lidar considered in this study were thin, with typical depths of 550–750 m. The vertical structure of the ash cloud simulated by NAME was generally consistent with the observed ash layers, although the layers in the simulated ash clouds that are identified with observed ash layers are about twice the depth of the observed layers. The structure of the simulated ash clouds were sensitive to the profile of ash emissions that was assumed. In terms of horizontal and vertical structure the best results were obtained by assuming that the emission occurred at the top of the eruption plume, consistent with the observed structure of eruption plumes. However, early in the period when the intensity of the eruption was low, assuming that the emission of ash was uniform with height gives better guidance on the horizontal and vertical structure of the ash cloud. Comparison of the lidar concentrations with those from NAME show that 2–5% of the total mass erupted by the volcano remained in the ash cloud over the United Kingdom.
Resumo:
The exact pattern, process and timing of the human re-colonization of northern Europe after the end of the last Ice Age remain controversial. Recent research has provided increasingly early dates for at least pioneer explorations of latitudes above 54°N in many regions, yet the far north-west of the European landmass, Scotland, has remained an unexplained exception to this pattern. Although the recently described Hamburgian artefacts from Howburn and an assemblage belonging to the arch-backed point complex from Kilmelfort Cave have established at least a sporadic human presence during earlier stages of the Lateglacial Interstadial, we currently lack evidence for Younger Dryas/Greenland Stadial 1 (GS-1) activity other than rare stray finds that have been claimed to be of Ahrensburgian affiliation but are difficult to interpret in isolation. We here report the discovery of chipped stone artefacts with technological and typological characteristics similar to those of the continental Ahrensburgian at a locality in western Scotland. A preliminary analysis of associated tephra, pollen and phytoliths, along with microstratigraphic analysis, suggest the artefacts represent one or more episodes of human activity that fall within the second half of GS-1 and the Preboreal period
Resumo:
We present four SHRIMP U-Pb zircon ages for the Choiyoi igneous province from the San Rafael Block, central-western Argentina. Dated samples come from the Yacimiento Los Reyunos Formation (281.4 +/- 2.5 Ma) of the Cochico Group (Lower Choiyoi section: andesitic breccias, dacitic to rhyolitic ignimbrites and continental conglomerates). Agua de los Burros Formation (264.8 +/- 2.3 Ma and 264.5 +/- 3.0 Ma) and Cerro Carrizalito Formation (251.9 +/- 2.7 Ma Upper Choiyoi section: rhyolitic ignimbrites and pyroclastic flows) spanning the entire Permian succession of the Choiyoi igneous province. A single ziron from the El Imperial Formation, that is overlain unconformably by the Choiyoi succession, yielded an early Permian age (297.2 +/- 5.3 Ma). while the main detrital zircon population indicated an Ordovician age (453.7 +/- 8.1 Ma). The new data establishes a more precise Permian age (Artinskian-Lopingian) for the section studied spanning 30 Ma of volcanic activity. Volcanological observations for the Choiyoi succession support the occurrence of explosive eruptions of plinian to ultraplinian magnitudes, capable of injecting enormous volumes of tephra in the troposphere-stratosphere. The new SHRIMP ages indicate contemporaneity between the Choyoi succession and the upper part of the Parana Basin late Paleozoic section, from the Irad up to the Rio do Rasto formations, encompassing about 24 Ma. Geochemical data show a general congruence in compositional and tectonic settings between the volcanics and Parana Basin Permian ash fall derived layers of bentonites. Thickness and granulometry of ash fall layers broadly fit into the depletion curve versus distance from the remote source vent of ultraplinian eruptions. Thus, we consider that the Choiyoi igneous province was the source of ash fall deposits in the upper Permian section of the Parana Basin. Data presented here allow a more consistent correlation between tectono-volcanic Permian events along the paleo-Pacific margin of southwestern Gondwana and the geological evolution of neighboring Paleozoic foreland basins in South America and Africa. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Cascade Mountain Range in Washington State is the site of several active volcanoes that have the potential to erupt which would deeply affect the lives of those who live near them. This study explores the hazard areas associated with the five largest volcanoes in the region: Mt. Baker, Glacier Peak, Mt. Rainier, Mt. Adams and Mt. St. Helens. It was determined which geographic regions would be affected by tephra, pyroclastic blasts and lahar flows and the associated populations that live in each of these areas. The level of emergency preparedness necessary for a volcanic eruption could be better determined based on the findings of this study.
Resumo:
Although many glass-bearing horizons can be found in South American volcanic complexes or sedimentary series, only a relatively few tephra and obsidian-bearing volcanic fields have been studied using the fission-track (FT) dating method. Among them, the volcanics located in the Sierra de Guamani (east of Quito, Ecuador) were studied by several authors. Based upon their ages, obsidians group into three clusters: (1) very young obsidians, similar to 0.2Ma old, (2) intermediate-age obsidians, similar to 0.4- similar to 0.8 Ma old, and (3) older obsidians, similar to 1.4- similar to 1.6 Ma old. The FT method is also an efficient alternative technique for identification of the sources of prehistoric obsidian artefacts. Provenance studies carried out in South America have shown that the Sierra de Guamani obsidian occurrences were important sources of raw material for toot making during pre-Columbian times. Glasses originated from these sources were identified in sites distributed over relatively wide areas of Ecuador and Colombia.Only a few systematic studies on obsidians in other sectors were carried out. Nevertheless, very singular glasses have been recognised in South America, such as Macusanite (Peru) and obsidian Quiron (Argentina), which are being proposed as additional reference materials for FT dating. Analyses of tephra beds interstratified with sedimentary deposits revealed the performance of FT dating in tephrochronological studies. A remarkable example is the famous deposit outcropping at Farola Monte Hermoso, near Bahia Blanca (Buenos Aires Province), described for the first time by the middle of the 19th century by Charles Darwin.Considering the large number of volcanic glasses that were recognised in volcanic complexes and in sedimentary series, South America is a very promising region for the application of FT dating. The examples given above show that this technique may yield important results in different disciplinary fields. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A full set of geochemical and Sr, Nd and Pb isotope data both on bulk-rock and mineral samples is provided for volcanic rocks representative of the whole stratigraphic succession of Lipari Island in the Aeolian archipelago. These data, together with petrographic observations and melt/fluid inclusion investigations from the literature, give outlines on the petrogenesis and evolution of magmas through the magmatic and eruptive history of Lipari. This is the result of nine successive Eruptive Epochs developing between 271 ka and historical times, as derived from recentmost volcanological and stratigraphic studies, combined with available radiometric ages and correlation of tephra layers and marine terrace deposits. These Eruptive Epochs are characterized by distinctive vents partly overlapping in space and time, mostly under control of the main regional tectonic trends (NNW-SSE, N-S and minor E-W). A large variety of lava flows, scoriaceous deposits, lava domes, coulees and pyroclastics are emplaced, ranging in composition through time from calcalkaline (CA) and high-K (HKCA) basaltic andesites to rhyolites. CA and HKCA basaltic andesitic to dacitic magmas were erupted between 271 and 81 ka (Eruptive Epochs 1-6) from volcanic edifices located along the western coast of the island (and subordinately the eastern Monterosa) and the M.Chirica and M.S.Angelo stratocones. These mafic to intermediate magmas mainly evolved through AFC and RAFC processes, involving fractionation of mafic phases, assimilation of wall rocks and mixing with newly injected mafic magmas. Following a 40 ka-long period of volcanic quiescence, the rhyolitic magmas were lately erupted from eruptive vents located in the southern and north-eastern sectors of Lipari between 40 ka and historical times (Eruptive Epochs 7-9). They are suggested to derive from the previous mafic to intermediate melts through AFC processes. During the early phases of rhyolitic magmatism (Eruptive Epochs 7-8), enclaves-rich rocks and banded pumices, ranging in composition from HKCA dacites to low-SiO2 rhyolites were erupted, representing the products of magma mixing between fresh mafic magmas and the fractionated rhyolitic melts. The interaction of mantle-derived magmas with the crust represents an essential process during the whole magmatic hystory of Lipari, and is responsible for the wide range of observed geochemical and isotopic variations. The crustal contribution was particularly important during the intermediate phases of activity of Lipari when the cordierite-bearing lavas were erupted from the M. S.Angelo volcano (Eruptive Epoch 5, 105 ka). These lavas are interpreted as the result of mixing and subsequent hybridization of mantle-derived magmas, akin to the ones characterizing the older phases of activity of Lipari (Eruptive Epochs 1-4), and crustal anatectic melts derived from dehydration-melting reactions of metapelites in the lower crust. A comparison between the adjacent islands of Lipari and Vulcano outlines that their mafic to intermediate magmas seem to be genetically connected and derive from a similar mantle source affected by different degrees of partial melting (and variable extent of crustal assimilation) producing either the CA magmas of Lipari (higher degrees) or the HKCA to SHO magmas of Vulcano (lower degrees). On a regional scale, the most primitive rocks (SiO2<56%, MgO>3.5%) of Lipari, Vulcano, Salina and Filicudi are suggested to derive from a similar MORB-like source, variably metasomatized by aqueous fluids coming from the slab and subordinately by the additions of sediments.
Resumo:
Palynologie und Sedimentologie der Interglazialprofile Döttingen, Bonstorf, Munster und Bilshausen Zusammenfassung In der vorliegenden Dissertation wurden vier dem Holstein-Interglazial zugehörige Bohrkerne sowie ein rhumezeitlicher Bohrkern palynologisch und sedimentologisch bearbeitet. Die holsteinzeitlichen Bohrkerne stammen aus Kieselgurlagerstätten der Lüneburger Heide (Bonstorf und Munster) und aus einem Trockenmaar (Döttingen) in der Eifel. Der rhumezeitliche Kern stammt aus der Typlokalität Bilshausen im Harzvorland. Neben Prozentwertdiagrammen werden Pollendichte- und wenn möglich Polleninfluxwerte vorgestellt, die insbesondere für die Lokalitäten Hetendorf/Bonstorf und Munster/Breloh bisher nicht verfügbar waren. Mit dem Profil Döttingen konnte erstmals eine sowohl vollständige als auch nicht innerhalb des klassischen Aufkommens holsteinzeitlicher Fundstellen im norddeutschen Tiefland positionierte Holsteinsequenz aus dem deutschen Mittelgebirge dokumentiert werden. Das erhaltene Pollendiagramm bestätigt die aus den norddeutschen Profilen bekannte holsteintypische Vegetationsabfolge, durch die das Holstein gegenüber anderen Interglazialen wie Holozän, Eem oder Rhume palynologisch definiert ist. Neben der grundsätzlichen Übereinstimmung der Pollensequenz unterscheidet sich das Profil Döttingen aber deutlich im prozentualen Aufkommen der beteiligten Taxa von den norddeutschen Profilen. So wird eine hohe Alnus-Präsenz als Merkmal deutscher Holsteinprofile bestätigt, jedoch ist die, in den norddeutschen Lokalitäten durchhaltend hohe oder dominante Beteiligung von Pinus im deutschen Mittelgebirge nicht vorhanden und muss daher auf die Standortbedingungen Norddeutschlands zurückgeführt werden. Abies dagegen ist im Holstein der Mittelgebirge wesentlich präsenter als im norddeutschen Flachland. Im Profil Döttingen wurden insgesamt 10 Tephralagen gefunden. Auf eine dieser Tephren folgt ein „Birken-Kiefern-Gräser Vorstoß“, der palynostratigraphisch dem älteren „Birken-Kiefern Vorstoß“ in Munster/Breloh entspricht. Als eine Typologie des Holstein kann das in den Profilen Döttingen und Munster bestätigte intraholsteinzeitliche Carpinus-Minimum verstanden werden. An Hand sedimentologischer und palynologischer Befunde aus dem Bohrkern MU 2 muss die Existenz zweier, in der Literatur postulierter, postholsteinzeitlicher, „Nachschwankungen“ in Munster/Breloh in Frage gestellt, wenn nicht abgelehnt werden. In Kern MU 2 fallen palynostratigraphische Grenzen häufig mit Sandeinschaltungen zusammen. Eine dieser Sandeinschaltungen, nämlich unmittelbar vor dem älteren „Birken-Kiefern-Vorstoß“, korreliert in ihrer stratigraphischen Position mit der den „Birken-Kiefern-Gräser-Vorstoß“ im Profil Döttingen einleitenden Tephralage. Es gelang die Dauer des intraholsteinzeitlichen Carpinus Minimums auf etwa 1500±100 Jahre zu bestimmen und eine interne Zweigliederung zu dokumentieren. Im rhumezeitlichen Kern von Bilshausen (BI 1) konnten zahlreiche Störungen nachgewiesen werden. Insbesondere im Teufenbereich des Bilshausener „Birken-Kiefern-Vorstoßes“ deuten diese auf eine möglicherweise verfälschte Überlieferung. Der palynologisch markante „Lindenfall“ von Bilshausen liegt im Bereich einer isoklinalen Schichtenverfaltung. Die in der Literatur im Horizont des „Lindenfalls“ beschriebene „Bilshausentephra“ wurde nicht gefunden. Warvenzählungen an den Kernen MU 1, MU 2 und BI 1 ermöglichten Pollenzonendauern in Holstein- und Rhume-Interglazial zu bestimmen. Dabei wurde mittels den Warvenzählungen, unter zu Hilfenahme von Literaturdaten und von Schätzwerten eine Dauer für das Holstein-Interglazial sensu stricto (Pollenzonen I-XIV) von 15400-17800 Jahren und für das Rhume-Interglazial von wahrscheinlich 22000 Jahren bis maximal 26000 Jahren ermittelt.
Resumo:
Während der Glazialphasen kam es in den europäischen Mittelgebirgen bedingt durch extensive solifluidale Massenbewegungen zur Bildung von Deckschichten. Diese Deckschichten repräsentieren eine Mischung verschiedener Substrate, wie anstehendes Ausgangsgestein, äolische Depositionen und lokale Erzgänge. Die räumliche Ausdehnung der Metallkontaminationen verursacht durch kleinräumige Erzgänge wird durch die periglaziale Solifluktion verstärkt. Das Ziel der vorliegenden Untersuchung war a) den Zusammenhang zwischen den Reliefeigenschaften und den Ausprägungen der solifluidalen Deckschichten und Böden aufzuklären, sowie b) mittels Spurenelementgehalte und Blei-Isotopen-Verhältnisse als Eingangsdaten für Mischungsmodelle die Beitrage der einzelnen Substrate zum Ausgangsmaterial der Bodenbildung zu identifizieren und quantifizieren und c) die räumliche Verteilung von Blei (Pb) in Deckschichten, die über Bleierzgänge gewandert sind, untersucht, die Transportweite des erzbürtigen Bleis berechnet und die kontrollierenden Faktoren der Transportweite bestimmt werden. Sechs Transekte im südöstlichen Rheinischen Schiefergebirge, einschließlich der durch periglaziale Solifluktion entwickelten Böden, wurden untersucht. Die bodenkundliche Geländeaufnahme erfolgte nach AG Boden (2005). O, A, B und C-Horizontproben wurden auf ihre Spurenelementgehalte und teilweise auf ihre 206Pb/207Pb-Isotopenverhältnisse analysiert. Die steuernden Faktoren der Verteilung und Eigenschaften periglazialer Deckschichten sind neben der Petrographie, Reliefeigenschaften wie Exposition, Hangneigung, Hangposition und Krümmung. Die Reliefanalyse zeigt geringmächtige Deckschichten in divergenten, konvexen Hangbereichen bei gleichzeitig hohem Skelettgehalt. In konvergent, konkaven Hangbereichen nimmt die Deckschichtenmächtigkeit deutlich zu, bei gleichzeitig zunehmendem Lösslehm- und abnehmendem Skelettgehalt. Abhängig von den Reliefeigenschaften und -positionen reichen die ausgeprägten Bodentypen von sauren Braunerden bis hin zu Pseudogley-Parabraunerden. Des Weiteren kommen holozäne Kolluvien in eher untypischen Reliefpositionen wie langgestreckten, kaum geneigten Hangbereichen oder Mittelhangbereichen vor. Außer für Pb bewegen sich die Spurenelementgehalte im Rahmen niedriger Hintergrundgehalte. Die Pb-Gehalte liegen zwischen 20-135 mg kg-1. Abnehmende Spurenelementgehalte und Isotopensignaturen (206Pb/207Pb-Isotopenverhältnisse) von Pb zeigen, dass nahezu kein Pb aus atmosphärischen Depositionen in die B-Horizonte verlagert wurde. Eine Hauptkomponentenanalyse (PCA) der Spurenelementgehalte hat vier Hauptsubstratquellen der untersuchten B-Horizonte identifiziert (Tonschiefer, Löss, Laacher-See-Tephra [LST] und lokale Pb-Erzgänge). Mittels 3-Komponenten-Mischungsmodell, das Tonschiefer, Löss und LST einschloss, konnten, bis auf 10 Ausreißer, die Spurenelementgehalte aller 120 B-Horizontproben erklärt werden. Der Massenbeitrag des Pb-Erzes zur Substratmischung liegt bei <0,1%. Die räumliche Pb-Verteilung zeigt Bereiche lokaler Pb-Gehaltsmaxima hangaufwärtiger Pb-Erzgänge. Mittels eines 206Pb/207Pb-Isotopenverhältnis-Mischungsmodells konnten 14 Bereiche erhöhter lokaler Pb-Gehaltsmaxima ausgewiesen werden, die 76-100% erzbürtigen Bleis enthalten. Mit Hilfe eines Geographischen Informationssystems wurden die Transportweiten des erzbürtigen Bleis mit 30 bis 110 m bestimmt. Die steuerenden Faktoren der Transportweite sind dabei die Schluffkonzentration und die Vertikalkrümmung. Diese Untersuchung zeigt, dass Reliefeigenschaften und Reliefposition einen entscheidenden Einfluss auf die Ausprägung der Deckschichten und Böden im europäischen Mittelgebirgsbereich haben. Mischungsmodelle in Kombination mit Spurenelementanalysen und Isotopenverhältnissen stellen ein wichtiges Werkzeug zur Bestimmung der Beiträge der einzelnen Glieder in Bodensubstratmischungen dar. Außerdem können lokale Bleierzgänge die natürlichen Pb-Gehalte in Böden, entwickelt in periglazialen Deckschichten der letzten Vereisungsphase (Würm), bis über 100 m Entfernung erhöhen.
Resumo:
The atmosphere is a global influence on the movement of heat and humidity between the continents, and thus significantly affects climate variability. Information about atmospheric circulation are of major importance for the understanding of different climatic conditions. Dust deposits from maar lakes and dry maars from the Eifel Volcanic Field (Germany) are therefore used as proxy data for the reconstruction of past aeolian dynamics.rnrnIn this thesis past two sediment cores from the Eifel region are examined: the core SM3 from Lake Schalkenmehren and the core DE3 from the Dehner dry maar. Both cores contain the tephra of the Laacher See eruption, which is dated to 12,900 before present. Taken together the cores cover the last 60,000 years: SM3 the Holocene and DE3 the marine isotope stages MIS-3 and MIS-2, respectively. The frequencies of glacial dust storm events and their paleo wind direction are detected by high resolution grain size and provenance analysis of the lake sediments. Therefore two different methods are applied: geochemical measurements of the sediment using µXRF-scanning and the particle analysis method RADIUS (rapid particle analysis of digital images by ultra-high-resolution scanning of thin sections).rnIt is shown that single dust layers in the lake sediment are characterized by an increased content of aeolian transported carbonate particles. The limestone-bearing Eifel-North-South zone is the most likely source for the carbonate rich aeolian dust in the lake sediments of the Dehner dry maar. The dry maar is located on the western side of the Eifel-North-South zone. Thus, carbonate rich aeolian sediment is most likely to be transported towards the Dehner dry maar within easterly winds. A methodology is developed which limits the detection to the aeolian transported carbonate particles in the sediment, the RADIUS-carbonate module.rnrnIn summary, during the marine isotope stage MIS-3 the storm frequency and the east wind frequency are both increased in comparison to MIS-2. These results leads to the suggestion that atmospheric circulation was affected by more turbulent conditions during MIS-3 in comparison to the more stable atmospheric circulation during the full glacial conditions of MIS-2.rnThe results of the investigations of the dust records are finally evaluated in relation a study of atmospheric general circulation models for a comprehensive interpretation. Here, AGCM experiments (ECHAM3 and ECHAM4) with different prescribed SST patterns are used to develop a synoptic interpretation of long-persisting east wind conditions and of east wind storm events, which are suggested to lead to an enhanced accumulation of sediment being transported by easterly winds to the proxy site of the Dehner dry maar.rnrnThe basic observations made on the proxy record are also illustrated in the 10 m-wind vectors in the different model experiments under glacial conditions with different prescribed sea surface temperature patterns. Furthermore, the analysis of long-persisting east wind conditions in the AGCM data shows a stronger seasonality under glacial conditions: all the different experiments are characterized by an increase of the relative importance of the LEWIC during spring and summer. The different glacial experiments consistently show a shift from a long-lasting high over the Baltic Sea towards the NW, directly above the Scandinavian Ice Sheet, together with contemporary enhanced westerly circulation over the North Atlantic.rnrnThis thesis is a comprehensive analysis of atmospheric circulation patterns during the last glacial period. It has been possible to reconstruct important elements of the glacial paleo climate in Central Europe. While the proxy data from sediment cores lead to a binary signal of the wind direction changes (east versus west wind), a synoptic interpretation using atmospheric circulation models is successful. This shows a possible distribution of high and low pressure areas and thus the direction and strength of wind fields which have the capacity to transport dust. In conclusion, the combination of numerical models, to enhance understanding of processes in the climate system, with proxy data from the environmental record is the key to a comprehensive approach to paleo climatic reconstruction.rn