949 resultados para Amplitude modulation detectors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 µM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s−1. Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e− rather than 1e– electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 µM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, designed topologies for DC-AC inversion with both voltage-buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable buck-boost three-level inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the Cuk-derived buck-boost two-level inverter, and by using the "alternative phase opposition disposition" (APOD) modulation scheme, the buck-boost three-level inverters can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage-boost section of the circuits by simply re-routing the gating commands of the remaining switches without influencing the ac output voltage amplitude. To verify the validity of the proposed inverters, Matlab/PLECS simulations were performed before a laboratory prototype was implemented for experimental testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, designed topologies for DC-AC inversion with both voltage buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable buck-boost three-level inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the Cuk-derived buck-boost two-level inverter, and by using the ldquoalternative phase opposition dispositionrdquo modulation scheme, the buck-boost three-level inverters can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage boost section of the circuits by simply rerouting the gating commands of the remaining switches without influencing the AC output voltage amplitude. To verify the validity of the proposed inverters, MATLAB/PLECS simulations were performed before a laboratory prototype was implemented for experimental testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of bat detectors to monitor bat activity is common. Although several papers have compared the performance of different brands, none have dealt with the effect of different habitats nor have they compared narrow- and broad-band detectors. In this study the performance of four brands of ultrasonic bat detector, including three narrowband and one broad-band model, were compared for their ability to detect a 40 kHz continuous sound of variable amplitude along 100 metre transects. Transects were laid out in two contrasting bat habitat types: grassland and forest. Results showed that the different brands of detector differed in their ability to detect the source in terms of maximum and minimum detectable distance of the source. The rate of sound degradation with distance as measured by each brand was also different. Significant differences were also found in the performance of different brands in open grassland versus deep forest. No significant differences were found within any brand of detector. Though not as sensitive as narrow-band detectors, broad-band models hold an advantage in their ability to identify species where several species are found sympatrically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectral energy associated with the carrier and sidebands of naturally sampled carrier based PWM can be spread by randomising the carrier (switch) half-period Tc = 1/2fc. So long as the switch duty cycle each period still correctly reflects the value of the modulating fundamental waveform as sampled during that switch period, then the fundamental component will remain undistorted. Natural sampling will ensure this occurs. Carrier based PWM can be extended to (m+1) level multilevel converter waveform generation by creating m triangular carriers, each with an equal 2*pi/m phase displacement. Alternatively the carrier disposition strategy calls for m amplitude displaced triangular carriers, each of amplitude 1/m and frequency mfc. Randomising these carrier sub-periods T0> = 1/2mfc is shown to generate (m+ 1) level PWM waveforms where the first (m-1) carrier groups are cancelled, while the remaining carrier and sidebands at multiples of mfc are spectrally spread. Numerous five level simulation and experimentally gathered randomised PWM waveforms are presented, showing the effects of the variation of the degree of randomisation, modulation depth and pulse number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modulational instability of a large-amplitude, linearly polarized electromagnetic wave propagating in an electron-positron plasma is considered, including the combined effect of relativistic mass variation of the plasma particles, harmonic generation, and the non-resonant, finite-frequency electrostatic density perturbations, all caused by the large-amplitude radiation field. The radiation from many strong sources, such as AGN and pulsars, has been observed to vary over a host of time-scales. It is possible that the extremely rapid variations in the non-thermal continuum of AGN, as well as in the non-thermal radio radiation from pulsars, can be accounted for by the modulational instabilities to which radiation may be subjected during its propagation out of the emission region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [phi(r, tau)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of phi(r, tau) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Delta n(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution. (C) 2011 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gabor's analytic signal (AS) is a unique complex signal corresponding to a real signal, but in general, it admits infinitely-many combinations of amplitude and frequency modulations (AM and FM, respectively). The standard approach is to enforce a non-negativity constraint on the AM, but this results in discontinuities in the corresponding phase modulation (PM), and hence, an FM with discontinuities particularly when the underlying AM-FM signal is over-modulated. In this letter, we analyze the phase discontinuities and propose a technique to compute smooth AM and FM from the AS, by relaxing the non-negativity constraint on the AM. The proposed technique is effective at handling over-modulated signals. We present simulation results to support the theoretical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage source inverters (VSIs) supply nonsinusoidal voltages to induction motor drives, leading to line current distortion and torque pulsation. Conventional space vector pulsewidth modulation (PWM) techniques are widely used in VSIs on the account of good waveform quality and high dc bus utilization. In a conventional space vector PWM technique, the switching sequence begins with one zero state and ends with the other zero state in a subcycle. Some novel switching sequences have been proposed, which employ only one zero state but apply one of the two active states twice in a subcycle. One pair of such special switching sequences has recently been shown to reduce the pulsating torque considerably. In this paper, the conventional and special switching sequences are compared experimentally in terms of acoustic noise. In the low-and medium-speed ranges, the special switching sequence is seen to reduce the amplitude of the tonal component of noise at the switching frequency considerably and is also found to result in spread spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we are interested in high spectral efficiency multicode CDMA systems with large number of users employing single/multiple transmit antennas and higher-order modulation. In particular, we consider a local neighborhood search based multiuser detection algorithm which offers very good performance and complexity, suited for systems with large number of users employing M-QAM/M-PSK. We apply the algorithm on the chip matched filter output vector. We demonstrate near-single user (SU) performance of the algorithm in CDMA systems with large number of users using 4-QAM/16-QAM/64-QAM/8-PSK on AWGN, frequency-flat, and frequency-selective fading channels. We further show that the algorithm performs very well in multicode multiple-input multiple-output (MIMO) CDMA systems as well, outperforming other linear detectors and interference cancelers reported in the literature for such systems. The per-symbol complexity of the search algorithm is O(K2n2tn2cM), K: number of users, nt: number of transmit antennas at each user, nc: number of spreading codes multiplexed on each transmit antenna, M: modulation alphabet size, making the algorithm attractive for multiuser detection in large-dimension multicode MIMO-CDMA systems with M-QAM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the vicinity of a Feshbach resonance, a system of ultracold atoms in an optical lattice undergoes rich physical transformations which involve molecule formation and hopping of molecules on the lattice and thus goes beyond a single-band Hubbard model description. We explore theoretically the response of this system to a harmonic modulation of the magnetic field, and thus of the scattering length, across the Feshbach resonance. In the regime in which the single-band Hubbard model is still valid, we provide results for the doublon production as a function of the various parameters, such as frequency, amplitude, etc., that characterize the field modulation, as well as the lattice depth. The method may uncover a route towards the efficient creation of ultracold molecules and also provide an alternative to conventional lattice-depth-modulation spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free surface waves in a cylinder of liquid under vertical excitation with slowly modulated amplitude are investigated in the current paper. It is shown by both theoretical analysis and numerical simulation that chaos may occur even for a single mode with modulation which can be used to explain Gollub and Meyer's experiment. The implied resonant mechanism accounting for this phenomenon is further elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A self-consistent theory of plasma response to a single laser beam is proposed. The driving pump is not viewed as invariant during its interaction with the plasmas. Its modulation by the plasmas has an obvious influence on the strength of the wakefield behind the pulse. This suggests that the compression of the low-intensity pulse by the plasmas might be a possible way to excite largae-amplitude wakefield. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancellation of interfering frequency-modulated (FM) signals is investigated with emphasis towards applications on the cellular telephone channel as an important example of a multiple access communications system. In order to fairly evaluate analog FM multiaccess systems with respect to more complex digital multiaccess systems, a serious attempt to mitigate interference in the FM systems must be made. Information-theoretic results in the field of interference channels are shown to motivate the estimation and subtraction of undesired interfering signals. This thesis briefly examines the relative optimality of the current FM techniques in known interference channels, before pursuing the estimation and subtracting of interfering FM signals.

The capture-effect phenomenon of FM reception is exploited to produce simple interference-cancelling receivers with a cross-coupled topology. The use of phase-locked loop receivers cross-coupled with amplitude-tracking loops to estimate the FM signals is explored. The theory and function of these cross-coupled phase-locked loop (CCPLL) interference cancellers are examined. New interference cancellers inspired by optimal estimation and the CCPLL topology are developed, resulting in simpler receivers than those in prior art. Signal acquisition and capture effects in these complex dynamical systems are explained using the relationship of the dynamical systems to adaptive noise cancellers.

FM interference-cancelling receivers are considered for increasing the frequency reuse in a cellular telephone system. Interference mitigation in the cellular environment is seen to require tracking of the desired signal during time intervals when it is not the strongest signal present. Use of interference cancelling in conjunction with dynamic frequency-allocation algorithms is viewed as a way of improving spectrum efficiency. Performance of interference cancellers indicates possibilities for greatly increased frequency reuse. The economics of receiver improvements in the cellular system is considered, including both the mobile subscriber equipment and the provider's tower (base station) equipment.

The thesis is divided into four major parts and a summary: the introduction, motivations for the use of interference cancellation, examination of the CCPLL interference canceller, and applications to the cellular channel. The parts are dependent on each other and are meant to be read as a whole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.

The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.