996 resultados para Airborne engineered nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light trapping, due to the embedding of metallic nanoparticles, has been shown to be beneficial for a better photoabsorption in organic solar cells. Researchers in plasmonics and in the organic photovoltaics fields are working together to improve the absorption of sunlight and the photon–electron coupling to boost the performance of the devices. Recent advances in the field of plasmonics for organic solar cells focus on the incorporation of gold nanoparticles. This article reviews the different methods to produce and embed gold nanoparticles into organic solar cells. In particular, concentration, size and geometry of gold nanoparticles are key factors that directly influence the light absorption in the devices. It is shown that a careful choice of size, concentration and location of gold nanoparticles in the device result in an enhancement of the power conversion efficiencies when compared to standard organic solar cell devices. Our latest results on gold nanoparticles embedded in on organic solar cell devices are included. We demonstrate that embedded gold nanoparticles, created by depositing and annealing a gold film on transparent electrode, generate a plasmonic effect which can be exploited to increase the power conversion efficiency of a bulk heterojunction solar cell up to 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms leading to colonization of metastatic breast cancer cells (BCa) in the skeleton are still not fully understood. Here, we demonstrate that mineralized extracellular matrices secreted by primary human osteoblasts (hOBM) modulate cellular processes associated with BCa colonization of bone. A panel of four BCa cell lines of different bone-metastatic potential (T47D, SUM1315, MDA-MB-231, and the bone-seeking subline MDA-MB-231BO) was cultured on hOBM. After 3 days, the metastatic BCa cells had undergone morphological changes on hOBM and were aligned along the hOBM's collagen type I fibrils that were decorated with bone-specific proteins. In contrast, nonmetastatic BCa cells showed a random orientation on hOBM. Atomic force microscopy-based single-cell force spectroscopy revealed that the metastatic cell lines adhered more strongly to hOBM compared with nonmetastatic cells. Function-blocking experiments indicated that β1-integrins mediated cell adhesion to hOBM. In addition, metastatic BCa cells migrated directionally and invaded hOBM, which was accompanied by enhanced MMP-2 and -9 secretion. Furthermore, we observed gene expression changes associated with osteomimickry in BCa cultured on hOBM. As such, osteopontin mRNA levels were significantly increased in SUM1315 and MDA-MB-231BO cells in a β1-integrin-dependent manner after growing for 3 days on hOBM compared with tissue culture plastic. In conclusion, our results show that extracellular matrices derived from human osteoblasts represent a powerful experimental platform to dissect mechanisms underlying critical steps in the development of bone metastases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the optical properties and catalytic capabilities of noble metal nanoparticles (NPs), such as gold (Au) and silver (Ag), have formed the basis for the very recent fast expansion of the field of green photocatalysis: photocatalysis utilizing visible and ultraviolet light, a major part of the solar spectrum. The reason for this growth is the recognition that the localised surface plasmon resonance (LSPR) effect of Au NPs and Ag NPs can couple the light flux to the conduction electrons of metal NPs, and the excited electrons and enhanced electric fields in close proximity to the NPs can contribute to converting the solar energy to chemical energy by photon-driven photocatalytic reactions. Previously the LSPR effect of noble metal NPs was utilized almost exclusively to improve the performance of semiconductor photocatalysts (for example, TiO2 and Ag halides), but recently, a conceptual breakthrough was made: studies on light driven reactions catalysed by NPs of Au or Ag on photocatalytically inactive supports (insulating solids with a very wide band gap) have demonstrated that these materials are a class of efficient photocatalysts working by mechanisms distinct from those of semiconducting photocatalysts. There are several reasons for the significant photocatalytic activity of Au and Ag NPs. (1) The conduction electrons of the particles gain the irradiation energy, resulting in high energy electrons at the NP surface which is desirable for activating molecules on the particles for chemical reactions. (2) In such a photocatalysis system, both light harvesting and the catalysing reaction take place on the nanoparticle, and so charge transfer between the NPs and support is not a prerequisite. (3) The density of the conduction electrons at the NP surface is much higher than that at the surface of any semiconductor, and these electrons can drive the reactions on the catalysts. (4) The metal NPs have much better affinity than semiconductors to many reactants, especially organic molecules. Recent progress in photocatalysis using Au and Ag NPs on insulator supports is reviewed. We focus on the mechanism differences between insulator and semiconductor-supported Au and Ag NPs when applied in photocatalytic processes, and the influence of important factors, light intensity and wavelength, in particular estimations of light irradiation contribution, by calculating the apparent activation energies of photo reactions and thermal reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a comprehensive study of plasmonic gold photocatalysts for organic conversions. It presents the advantages of plasmonic gold photocatalysts in the selective oxidation, reduction, and acetalisation. It is discovered that plasmonic gold photocatalysts exhibit better catalytic performance (higher selectivity or activity) in these organic conversions. The study in this thesis highlights the capacity of plasmonic gold photocatalysts in harvesting solar energy for converting organic raw materials to value-added chemicals, and the great potential of gold photocatalysts in chemical production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research introduces a novel dressing for burn wounds, containing silver nanoparticles in hydrogels for infected burn care. The 2-acrylamido-2-methylpropane sulfonic acid sodium salt hydrogels containing silver nanoparticles have been prepared via ultraviolet radiation. The formation of silver nanoparticles was monitored by surface plasmon bands and transmission electron microscopy. The concentration of silver nitrate loaded in the solutions slightly affected the physical properties and mechanical properties of the neat hydrogel. An indirect cytotoxicity study found that none of the hydrogels were toxic to tested cell lines. The measurement of cumulative release of silver indicated that 70%–82% of silver was released within 72 hr. The antibacterial activities of the hydrogels against common burn pathogens were studied and the results showed that 5 mM silver hydrogel had the greatest inhibitory activity. The results support its use as a potential burn wound dressing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of effective therapeutic strategies against prostate cancer bone metastases has been impeded by the lack of adequate animal models that are able to recapitulate the biology of the disease in humans. Bioengineered approaches allow researchers to create sophisticated experimentally and physiologically relevant in vivo models to study interactions between cancer cells and their microenvironment under reproducible conditions. The aim of this study was to engineer a morphologically and functionally intact humanized organ bone which can serve as a homing site for human prostate cancer cells. Transplantation of biodegradable tubular composite scaffolds seeded with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone construct including a large number of human mesenchymal cells which were shown to be metabolically active and capable of producing extracellular matrix components. Micro-CT analysis demonstrated that the newly formed ossicle recapitulated the morphological features of a physiological organ bone with a trabecular network surrounded by a cortex-like outer structure. This microenvironment was supportive of the lodgement and maintenance of murine haematopoietic cell clusters, thus mimicking a functional organ bone. Bioluminescence imaging demonstrated that luciferase-transduced human PC3 cells reproducibly homed to the humanized tissue engineered bone constructs, proliferated, and developed macro-metastases. This model allows the analysis of interactions between human prostate cancer cells and a functional humanized bone organ within an immuno-incompetent murine host. The system can serve as a reproducible platform to study effects of therapeutics against prostate cancer bone metastases within a humanized microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold particle interaction with few-layer graphenes is of interest for the development of numerous optical nanodevices. The results of numerical studies of the coupling of gold nanoparticles with few-layer vertical graphene sheets are presented. The field strengths are computed and the optimum nanoparticle configurations for the formation of SERS hotpots are obtained. The nanoparticles are modeled as 8 nm diameter spheres atop 1.5 nm (5 layers) graphene sheet. The vertical orientation is of particular interest as it is possible to use both sides of the graphene structure and potentially double the number of particles in the system. Our results show that with the addition of an opposing particle a much stronger signal can be obtained as well as the particle separation can be controlled by the number of atomic carbon layers. These results provide further insights and contribute to the development of next-generation plasmonic devices based on nanostructures with hybrid dimensionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanochemical synthesis process has been used to synthesise aluminium nanoparticles. The aluminium is synthesised via a solid state chemical reaction which is initiated inside a ball mill at room temperature between either lithium (Li) or sodium (Na) metal which act as reducing agents with unreduced aluminium chloride (AlCl3). The reaction product formed consists of aluminium nanoparticles embedded within a by-product salt phase (LiCl or NaCl, respectively). The LiCl is washed with a suitable solvent resulting in aluminium (Al) nanoparticles which are not oxidised and are separated from the byproduct phase. Synthesis and washing was confirmed using X-ray diffraction (XRD). Nanoparticles were found to be ∼25–100nm from transmission electron microscopy (TEM) and an average size of 55nm was determined fromsmall angle X-ray scattering (SAXS) measurements. As synthesised Al/NaCl composites, washed Al nanoparticles, and purchased Al nanoparticles were deuterium (D2) absorption tested up to 2 kbar at a variety of temperatures, with no absorption detected within system resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigated the impact of the HVAC filtration system and indoor particle sources on the relationship between indoor and outdoor airborne particle size and concentrations in an operating room. Filters with efficiency between 65% and 99.97% were used in the investigation and indoor and outdoor particle size and concentrations were measured. A balance mass model was used for the simulation of the impact of the surgical team, deposition rate, HVAC exhaust and air change rates on indoor particle concentration. The experimental results showed that high efficiency filters would not be expected to decrease the risk associated with indoor particles larger than approximately 1 µm in size because normal filters are relatively efficient for these large particles. A good fraction of outdoor particles were removed by deposition on the HVAC system surfaces and this deposition increased with particle size. For particles of 0.3-0.5 µm in diameter, particle reduction was about 23%, while for particles >10 µm the loss was about 78%. The modelling results showed that depending on the type of filter used, the surgical team generated between 93-99% of total particles, while the outdoor air contributed only 1-6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although both the size and chemical composition of ambient particles are important parameters in determining their toxicities, their relative contributions are unclear (Heal et al., 2012). Children are particularly at risk to the detrimental health effects that have been linked to long term exposure to airborne particles (See e.g. Ruckerl et al., 2011). However, there is currently limited understanding of the health effects in children due to long term exposure to airborne particles. Schools are locations within an urban environment where children experience significant exposure to vehicle emissions, and to date there is limited information assessing children’s exposure at school. This study is a part of a large project aimed at gaining a holistic picture of the exposure of children to traffic related pollutants. In the current paper, results from the investigation of the elemental composition of airborne particle at urban schools are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for the estimation of thrust model parameters of uninhabited airborne systems using specific flight tests. Particular tests are proposed to simplify the estimation. The proposed estimation method is based on three steps. The first step uses a regression model in which the thrust is assumed constant. This allows us to obtain biased initial estimates of the aerodynamic coeficients of the surge model. In the second step, a robust nonlinear state estimator is implemented using the initial parameter estimates, and the model is augmented by considering the thrust as random walk. In the third step, the estimate of the thrust obtained by the observer is used to fit a polynomial model in terms of the propeller advanced ratio. We consider a numerical example based on Monte-Carlo simulations to quantify the sampling properties of the proposed estimator given realistic flight conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Tissue engineering of patient-specific adipose tissue has the potential to revolutionize reconstructive surgery. Numerous models have been described for the production of adipose tissue with success in the short term, but little has been reported on the stability of this tissue-engineered fat beyond 4 months. METHODS A murine model of de novo adipogenesis producing a potentially transplantable adipose tissue flap within 4 to 6 weeks was developed in the authors' laboratory. In this study, the authors assess the ability of three-chamber (44-μl volume) configurations shown to be adipogenic in previous short-term studies (autograft, n = 8; open, n = 6; fat flap, n = 11) to maintain their tissue volume for up to 12 months in vivo, to determine the most adipogenic configuration in the long term. RESULTS Those chambers having the most contact with existing vascularized adipose tissue (open and fat flap groups) showed increased mean adipose tissue percentage (77 ± 5.6 percent and 81 ± 6.9 percent, respectively; p < 0.0007) and volume (12 ± 6.8 μl and 30 ± 14 μl, respectively; p < 0.025) when compared with short-term controls and greater adipose tissue volume than the autograft (sealed) chamber group (4.9 ± 5.8 μl; p = 0.0001) at 1 year. Inclusion of a vascularized fat flap within the chamber produced the best results, with new fat completely filling the chamber by 1 year. CONCLUSIONS These findings demonstrate that fat produced by tissue engineering is capable of maintaining its volume when the appropriate microenvironment is provided. This has important implications for the application of tissue-engineering techniques in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major obstacle to 3-dimensional tissue engineering is incorporation of a functional vascular supply to support the expanding new tissue. This is overcome in an in vivo intrinsic vascularization model where an arteriovenous loop (AVL) is placed in a noncollapsible space protected by a polycarbonate chamber. Vascular development and hypoxia were examined from 3 days to 112 days by vascular casting, morphometric, and morphological techniques to understand the model's vascular growth and remodeling parameters for tissue engineering purposes. At 3 days a fibrin exudate surrounded the AVL, providing a scaffold to migrating inflammatory, endothelial, and mesenchymal cells. Capillaries formed between 3 and 7 days. Hypoxia and cell proliferation were maximal at 7 days, followed by a peak in percent vascular volume at 10 days (23.20±3.14% compared with 3.59±2.68% at 3 days, P<0.001). Maximal apoptosis was observed at 112 days. The protected space and spontaneous microcirculatory development in this model suggest it would be applicable for in vivo tissue engineering. A temporal window in a period of intense angiogenesis at 7 to 10 days is optimal for exogenous cell seeding and survival in the chamber, potentially enabling specific tissue outcomes to be achieved.