990 resultados para Agrobacterium-mediated transformation
Resumo:
Composite plants consisting of a wild-type shoot and a transgenic root are frequently used for functional genomics in legume research. Although transformation of roots using Agrobacterium rhizogenes leads to morphologically normal roots, the question arises as to whether such roots interact with arbuscular mycorrhizal (AM) fungi in the same way as wild-type roots. To address this question, roots transformed with a vector containing the fluorescence marker DsRed were used to analyse AM in terms of mycorrhization rate, morphology of fungal and plant subcellular structures, as well as transcript and secondary metabolite accumulations. Mycorrhization rate, appearance, and developmental stages of arbuscules were identical in both types of roots. Using Mt16kOLI1Plus microarrays, transcript profiling of mycorrhizal roots showed that 222 and 73 genes exhibited at least a 2-fold induction and less than half of the expression, respectively, most of them described as AM regulated in the same direction in wild-type roots. To verify this, typical AM marker genes were analysed by quantitative reverse transcription-PCR and revealed equal transcript accumulation in transgenic and wild-type roots. Regarding secondary metabolites, several isoflavonoids and apocarotenoids, all known to accumulate in mycorrhizal wild-type roots, have been found to be up-regulated in mycorrhizal in comparison with non-mycorrhizal transgenic roots. This set of data revealed a substantial similarity in mycorrhization of transgenic and wild-type roots of Medicago truncatula, validating the use of composite plants for studying AM-related effects.
Resumo:
Genome editing is becoming an important biotechnological tool for gene function analysis and crop improvement, being the CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR associated protein 9) system the most widely used. The natural CRISPR/Cas9 system has been reduced to two components: a single-guide RNA (sgRNA) for target recognition via RNA-DNA base pairing, which is commonly expressed using a promoter for small-RNAs (U6 promoter), and the Cas9 endonuclease for DNA cleavage (1). To validate the CRISPR/Cas9 system in strawberry plants, we designed two sgRNAs directed against the floral homeotic gene APETALA3 (sgRNA-AP3#1 and sgRNA-AP3#2). This gene was selected because ap3 mutations induce clear developmental phenotypes in which petals and stamens are missing or partially converted to sepals and carpels respectively (2). In this work, we used two different U6 promoters to drive the sgRNA-AP3s expression: AtU6-26 from Arabidopsis (4), and a U6 promoter from Fragaria vesca (FvU6) (this work). We also tested two different coding sequences of Cas9: a human- (hSpCas9) (3) and a plant-codon optimized (pSpCas9) (this work). Transient expression experiments using both CRISPR/Cas9 systems (AtU6-26:sgRNA-AP3#1_35S:hSpCas9_AtU6-26:sgRNA-AP3#2 and FvU6:sgRNA-AP3#1_35S:pSpCas9_FvU6:sgRNA-AP3#2) were performed infiltrating Agrobacterium tumefaciens into F. vesca fruits. PCR amplification and sequencing analyses across the target sites showed a deletion of 188-189 bp corresponding to the region comprised between the two cutting sites of Cas9, confirming that the CRISPR/Cas9 system is functional in F. vesca. Remarkably, the two systems showed different mutagenic efficiency that could be related to differences in expression of the U6 promoters as well as differences in the Cas9 transcripts stability and translation. Stable transformants for both F. vesca (2n) and Fragaria X anannassa (8n) are currently being established to test whether is possible to obtain heritable homozygous mutants derived from CRISPR/Cas9 strategies in strawberry. Thus, our work offers a promising tool for genome editing and gene functional analysis in strawberry. This tool might represent a more efficient alternative to the sometimes inefficient RNAi silencing methods commonly used in this species.
Resumo:
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.
Resumo:
2016
Resumo:
Extreme sports and extreme sports participants have been most commonly explored from a negative perspective, for example the “need to take unnecessary risks.” This study explored what can be learned from extreme sports about courage and humility - two positive psychology constructs. A phenomenological method was used via unstructured interviews with 15 extreme sports participants and other first hand accounts. The extreme sports included B.A.S.E. jumping, big wave surfing, extreme skiing, waterfall kayaking, extreme mountaineering and solo rope-free climbing. Results indicate that humility and courage can be deliberately sought out by participating in activities that involve a real chance of death, fear and the realisation that nature in its extreme is far greater and more powerful than humanity.
Resumo:
Introduction : For the past decade, three dimensional (3D) culture has served as a foundation for regenerative medicine study. With an increasing awareness of the importance of cell-cell and cell-extracellular matrix interactions which are lacking in 2D culture system, 3D culture system has been employed for many other applications namely cancer research. Through development of various biomaterials and utilization of tissue engineering technology, many in vivo physiological responses are now better understood. The cellular and molecular communication of cancer cells and their microenvironment, for instance can be studied in vitro in 3D culture system without relying on animal models alone. Predilection of prostate cancer (CaP) to bone remains obscure due to the complexity of the mechanisms and lack of proper model for the studies. In this study, we aim to investigate the interaction between CaP cells and osteoblasts simulating the natural bone metastasis. We also further investigate the invasiveness of CaP cells and response of androgen sensitve CaP cells, LNCaP to synthetic androgen.----- Method : Human osteoblast (hOB) scaffolds were prepared by seeding hOB on medical grade polycaprolactone-tricalcium phosphate (mPLC-TCP) scaffolds and induced to produce bone matrix. CaP cell lines namely wild type PC3 (PC3-N), overexpressed prostate specific antigen PC3 (PC3k3s5) and LNCaP were seeded on hOB scaffolds as co-cultures. Morphology of cells was examined by Phalloidin-DAPI and SEM imaging. Gelatin zymography was performed on the 48 hours conditioned media (CM) from co-cultures to determine matrix metalloproteinase (MMP) activity. Gene expression of hOB/LNCaP co-cultures which were treated for 48 hours with 1nM synthetic androgen R1881 were analysed by quantitative real time PCR (qRT-PCR).----- Results : Co-culture of PCC/hOB revealed that the morphology of PCCs on the tissue engineered bone matrix varied from homogenous to heterogenous clusters. Enzymatically inactive pro-MMP2 was detected in CM from hOBs and PCCs cultured on scaffolds. Elevation in MMP9 activity was found only in hOB/PC3N co-culture. hOB/LNCaP co-culture showed increase in expression of key enzymes associated with steroid production which also corresponded to an increase in prostate specific antigen (PSA) and MMP9.----- Conclusions : Upregulation of MMP9 indicates involvement of ECM degradation during cancer invasion and bone metastases. Expression of enzymes involved in CaP progression, PSA, which is not expressed in osteoblasts, demonstrates that crosstalk between PCCs and osteoblasts may play a part in the aggressiveness of CaP. The presence of steroidogenic enzymes, particularly, RDH5, in osteoblasts and stimulated expression in co-culture, may indicate osteoblast production of potent androgens, fuelling cancer cell proliferation. Based on these results, this practical 3D culture system may provide greater understanding into CaP mediated bone metastasis. This allows the role of the CaP/hOB interaction with regards to invasive property and steroidogenesis to be further explored.
Resumo:
Tertiary education is increasingly a contested space where advances in Information Communications Technologies and their application to technology-mediated e-learning environments have forced university administrators and educators to dislocate themselves from traditional correspondence modes of student engagement. Compounding this paradigmatic shift within the traditional sphere of distance education pedagogy are multiple and conflicting pressures on academics to develop flexible, engaging, cost-effective and sustainable interactive learning resources that incorporate both multimedia and hypermedia. This chapter reports on a study that examined factors that influence educators’ decision to adopt and integrate educational technology and convert traditional print-based distance education materials into interactive multimodal e-learning formats. Although the broader study was conducted in a single Australian university and investigated pedagogical, institutional and individual factors, this chapter restricts its focus to solely the pedagogical motivations and concerns of educators. It is argued that findings from the study have significance at the institutional level, particularly in terms of developing an underlying pedagogical rationale that can permeate the e-learning culture throughout the university, while at the same time, providing a roadmap for educators who are yet to fully engage with the e-learning format.
Resumo:
In late 2004, the concept of the creative industries arrived in China. It was warmly welcomed in Shanghai then subsequently adopted with some degree of caution in Beijing. In the years since, officials, scholars, practitioners, entrepreneurs and developers have exploited of the idea of creative industries, and a range of associated terms, to construct an alternative vision of an emerging China. In 2009, Li Wuwei, the Director of the Shanghai Creative Industries Association, himself a leading player in national political reform, released a book titled Creativity is Changing China (Chuangyi gaibian Zhongguo), subsequently translated as Creative Industries Are Changing China in English. The paper investigates the uptake of the creative industries in China and asks: can they really change China, or are they just rearranging the cultural landscape in some cities?
Resumo:
Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases.
Resumo:
Insulin-like growth factor binding proteins (IGFBPs) are prime regulators of IGF-action in numerous cell types including the retinal pigment epithelium (RPE). The RPE performs several functions essential for vision, including growth factor secretion and waste removal via a phagocytic process mediated in part by vitronectin (Vn). In the course of studying the effects of IGFBPs on IGF-mediated VEGF secretion and Vn-mediated phagocytosis in the RPE cell line ARPE-19, we have discovered that these cells avidly ingest synthetic microspheres (2.0 μm diameter) coated with IGFBPs. Given the novelty of this finding and the established role for endocytosis in mediating IGFBP actions in other cell types, we have explored the potential role of candidate cell surface receptors. Moreover, we have examined the role of key IGFBP structural motifs, by comparing responses to three members of the IGFBP family (IGFBP-3, IGFBP-4 and IGFBP-5) which display overlapping variations in primary structure and glycosylation status. Coating of microspheres (FluoSpheres®, sulfate modified polystyrene filled with a fluorophore) was conducted at 37 °C for 1 h using 20 μg/mL of test protein, followed by extensive washing. Binding of proteins was confirmed using a microBCA assay. The negative control consisted of microspheres treated with 0.1% bovine serum albumin (BSA), and all test samples were post-treated with BSA in an effort to coat any remaining free protein binding sites, which might otherwise encourage non-specific interactions with the cell surface. Serum-starved cultures of ARPE-19 cells were incubated with microspheres for 24 h, using a ratio of approximately 100 microspheres per cell. Uptake of microspheres was quantified using a fluorometer and was confirmed visually by confocal fluorescence microscopy. The ARPE-19 cells displayed little affinity for BSA-treated microspheres, but avidly ingested large quantities of those pre-treated with Vn (ANOVA; p < 0.001). Strong responses were also observed towards recombinant formulations of non-glycosylated IGFBP-3, glycosylated IGFBP-3 and glycosylated IGFBP-5 (all p < 0.001), while glycosylated IGFBP-4 induced a relatively minor response (p < 0.05). The response to IGFBP-3 was unaffected in the presence of excess soluble IGFBP-3, IGF-I or Vn. Likewise, soluble IGFBP-3 did not induce uptake of BSA-treated microspheres. Antibodies to either the transferrin receptor or type 1 IGF-receptor displayed slight inhibitory effects on responses to IGFBPs and Vn. Heparin abolished responses to Vn, IGFBP-5 and non-glycosylated IGFBP-3, but only partially inhibited the response to glycosylated IGFBP-3. Our results demonstrate for the first time IGFBP-mediated endocytosis in ARPE-19 cells and suggest roles for the IGFBP-heparin-binding domain and glycosylation status. These findings have important implications for understanding the mechanisms of IGFBP actions on the RPE, and in particular suggest a role for IGFBP-endocytosis.