928 resultados para Agriculture, fuels, energy, society, climate change, sustainability.
Resumo:
This Chapter considers the geopolitical conflicts in respect of intellectual property, trade, and climate change in the TRIPS Agreement 1994 under the World Trade Organization (WTO). In particular, it focuses upon debates in the TRIPS Council on the topic of patent law and clean energy in 2013 and 2014. The chapter highlights the development agenda of a number of developing countries who are keen for access to clean energy to combat climate change and global warming. It also considers the mixed contributions of members of the BRICS/ BASIC group – including Brazil, India, China, and South Africa. This chapter highlights the intellectual property maximalist position of a number of developed countries on intellectual property, climate change, and trade. Seeking to overcome this conflict and stalemate, this Chapter puts forward both procedural and substantial reform options in respect of intellectual property, trade, and climate change in the TRIPS Council and the WTO. It also flags that the TRIPS Agreement 1994 could well be displaced by the rise of mega-regional trade agreements – such as the Trans-Pacific Partnership (TPP), and the Trans-Atlantic Trade and Investment Partnership (TTIP).
Resumo:
The indigenous cloud forests in the Taita Hills have suffered substantial degradation for several centuries due to agricultural expansion. Currently, only 1% of the original forested area remains preserved in this region. Furthermore, climate change imposes an imminent threat for local economy and environmental sustainability. In such circumstances, elaborating tools to conciliate socioeconomic growth and natural resources conservation is an enormous challenge. This dissertation tackles essential aspects for understanding the ongoing agricultural activities in the Taita Hills and their potential environmental consequences in the future. Initially, alternative methods were designed to improve our understanding of the ongoing agricultural activities. Namely, methods for agricultural survey planning and to estimate evapotranspiration were evaluated, taking into account a number of limitations regarding data and resources availability. Next, this dissertation evaluates how upcoming agricultural expansion, together with climate change, will affect the natural resources in the Taita Hills up to the year 2030. The driving forces of agricultural expansion in the region were identified as aiming to delineate future landscape scenarios and evaluate potential impacts from the soil and water conservation point of view. In order to investigate these issues and answer the research questions, this dissertation combined state of the art modelling tools with renowned statistical methods. The results indicate that, if current trends persist, agricultural areas will occupy roughly 60% of the study area by 2030. Although the simulated land use changes will certainly increase soil erosion figures, new croplands are likely to come up predominantly in the lowlands, which comprise areas with lower soil erosion potential. By 2030, rainfall erosivity is likely to increase during April and November due to climate change. Finally, this thesis addressed the potential impacts of agricultural expansion and climate changes on Irrigation Water Requirements (IWR), which is considered another major issue in the context of the relations between land use and climate. Although the simulations indicate that climate change will likely increase annual volumes of rainfall during the following decades, IWR will continue to increase due to agricultural expansion. By 2030, new cropland areas may cause an increase of approximately 40% in the annual volume of water necessary for irrigation.
Resumo:
Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. This paper addresses these challenges. Historically, the responsibility for greenhouse gas emissions' increase lies largely with the industrialized world, though the developing countries are likely to be the source of an increasing proportion of future emissions. The projected climate change under various scenarios is likely to have implications on food production, water supply, coastal settlements, forest ecosystems, health, energy security, etc. The adaptive capacity of communities likely to be impacted by climate change is low in developing countries. The efforts made by the UNFCCC and the Kyoto Protocol provisions are clearly inadequate to address the climate change challenge. The most effective way to address climate change is to adopt a sustainable development pathway by shifting to environmentally sustainable technologies and promotion of energy efficiency, renewable energy, forest conservation, reforestation, water conservation, etc. The issue of highest importance to developing countries is reducing the vulnerability of their natural and socio-economic systems to the projected climate change. India and other developing countries will face the challenge of promoting mitigation and adaptation strategies, bearing the cost of such an effort, and its implications for economic development.
Resumo:
Africa is threatened by climate change. The adaptive capacity of local communities continues to be weakened by ineffective and inefficient livelihood strategies and inappropriate development interventions. One of the greatest challenges for climate change adaptation in Africa is related to the governance of natural resources used by vulnerable poor groups as assets for adaptation. Practical and good governance activities for adaptation in Africa is urgently and much needed to support adaptation actions, interventions and planning. The adaptation role of forests has not been as prominent in the international discourse and actions as their mitigation role. This study therefore focused on the forest as one of the natural resources used for adaptation. The general objective of this research was to assess the extent to which cases of current forest governance practices in four African countries Burkina Faso, The Democratic Republic of Congo (DRC), Ghana and Sudan are supportive to the adaptation of vulnerable societies and ecosystems to impacts of climate change. Qualitative and quantitative analyses from surveys, expert consultations and group discussions were used in analysing the case studies. The entire research was guided by three conceptual sets of thinking forest governance, climate change vulnerability and ecosystem services. Data for the research were collected from selected ongoing forestry activities and programmes. The study mainly dealt with forest management policies and practices that can improve the adaptation of forest ecosystems (Study I) and the adaptive capacity through the management of forest resources by vulnerable farmers (Studies II, III, IV and V). It was found that adaptation is not part of current forest policies, but, instead, policies contain elements of risk management practices, which are also relevant to the adaptation of forest ecosystems. These practices include, among others, the management of forest fires, forest genetic resources, non-timber resources and silvicultural practices. Better livelihood opportunities emerged as the priority for the farmers. These vulnerable farmers had different forms of forest management. They have a wide range of experience and practical knowledge relevant to ensure and achieve livelihood improvement alongside sustainable management and good governance of natural resources. The contributions of traded non-timber forest products to climate change adaptation appear limited for local communities, based on their distribution among the stakeholders in the market chain. Plantation (agro)forestry, if well implemented and managed by communities, has a high potential in reducing socio-ecological vulnerability by increasing the food production and restocking degraded forest lands. Integration of legal arrangements with continuous monitoring, evaluation and improvement may drive this activity to support short, medium and long term expectations related to adaptation processes. The study concludes that effective forest governance initiatives led by vulnerable poor groups represent one practical way to improve the adaptive capacities of socio-ecological systems against the impacts of climate change in Africa.
Resumo:
This study approaches the problem of poverty in the hinterlands of Northeast Brazil through the concept of structural violence, linking the environmental threats posed by climate change, especially those related to droughts, to the broader social struggles in the region. When discussions about potentials and rights are incorporated into the problematic of poverty, a deeper insight is obtained regarding the various factors behind the phenomenon. It is generally believed that climate change is affecting the already marginalized and poor more than those of higher social standing, and will increasingly do so in the future. The data for this study was collected during a three month field work in the states of Pernambuco and Paraíba in Northeast Brazil. The main methods used were semi-structured interviews and participant observation, including attending seminars concerning climate change on the field. The focus of the work is to compare both layman and expert perceptions on what climate change is about, and question the assumptions about its effects in the future, mainly that of increased numbers of ‘climate refugees’ or people forced to migrate due to changes in climate. The focus on droughts, as opposed to other manifestations of climate change, arises from the fact that droughts are not only phenomena that develop over a longer time span than floods or hurricanes, but is also due to the historical persistence of droughts in the region, and both the institutional and cultural linkages that have evolved around it. The instances of structural violence that are highlighted in this study; the drought industry, land use, and the social and power relations present in the region, including those between the civil society, the state and the private agribusiness sector, all work against a backdrop of symbolic and moral realms of value production, where relations between the different actors are being negotiated anew with the rise of the climate change discourse. The main theoretical framework of the study consists of Johan Galtung’s and Paul Farmer’s theory of structural violence, Ulrich Beck’s theory of the risk society, and James Scott’s theory of everyday peasant resistance.
Resumo:
Climate change vulnerability profiles are developed at the district level for agriculture, water and forest sectors for the North East region of India for the current and projected future climates. An index-based approach was used where a set of indicators that represent key sectors of vulnerability (agriculture, forest, water) is selected using the statistical technique principal component analysis. The impacts of climate change on key sectors as represented by the changes in the indicators were derived from impact assessment models. These impacted indicators were utilized for the calculation of the future vulnerability to climate change. Results indicate that majority of the districts in North East India are subject to climate induced vulnerability currently and in the near future. This is a first of its kind study that exhibits ranking of districts of North East India on the basis of the vulnerability index values. The objective of such ranking is to assist in: (i) identifying and prioritizing the most vulnerable sectors and districts; (ii) identifying adaptation interventions, and (iii) mainstreaming adaptation in development programmes.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
This paper critically evaluates the vulnerability of Indian cities to climate change in the context of sustainable development. City-scale indicators are developed for multiple dimensions of security and vulnerability. Factor analysis is employed to construct a vulnerability ranking of 46 major Indian cities. The analysis reveals that high aggregate levels of wealth do not necessarily make a city less vulnerable. Two, cities with diversified economic opportunities could adapt better to the new risks posed by climate change, than cities with unipolar opportunities. Three, highly polluted cities are more vulnerable to the health impacts of climate change, and cities with severe groundwater depletion will find it difficult to cope with increased rainfall variability. Policy and sustainability issues are discussed for these results.
Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas
Resumo:
The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance such as the pollution of the snow cover through black carbon or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even-more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Despite high vulnerability, the impact of climate change on Himalayan ecosystem has not been properly investigated, primarily due to the inadequacy of observed data and the complex topography. In this study, we mapped the current vegetation distribution in Kashmir Himalayas from NOAA AVHRR and projected it under A1B SRES, RCP-4.5 and RCP-8.5 climate scenarios using the vegetation dynamics model-IBIS at a spatial resolution of 0.5A degrees. The distribution of vegetation under the changing climate was simulated for the 21st century. Climate change projections from the PRECIS experiment using the HADRM3 model, for the Kashmir region, were validated using the observed climate data from two observatories. Both the observed as well as the projected climate data showed statistically significant trends. IBIS was validated for Kashmir Himalayas by comparing the simulated vegetation distribution with the observed distribution. The baseline simulated scenario of vegetation (1960-1990), showed 87.15 % agreement with the observed vegetation distribution, thereby increasing the credibility of the projected vegetation distribution under the changing climate over the region. According to the model projections, grasslands and tropical deciduous forests in the region would be severely affected while as savannah, shrubland, temperate evergreen broadleaf forest, boreal evergreen forest and mixed forest types would colonize the area currently under the cold desert/rock/ice land cover types. The model predicted that a substantial area of land, presently under the permanent snow and ice cover, would disappear by the end of the century which might severely impact stream flows, agriculture productivity and biodiversity in the region.
Resumo:
Toxic-waste associated with coastal brownfield sites can pose serious risks to human and environmental health. In light of anticipated sea-level rise (SLR) due to global climate change, coastal brownfields require heightened attention. The primary intent of this study is to pose questions and encourage discussion of this problem among policy makers. Impacts from SLR on coastal zones are examined within a brownfield policy framework and, current coastal brownfield policy discussions with respect to SLR are also examined. (PDF contains 4 pages)
Resumo:
Port authorities from around the world were surveyed to ascertain how administrators feel climate change might impact their operations, what level of change would be problematic, and how they plan to adapt to new conditions. The survey was distributed to 350 major ports through two leading international port organizations, the International Association of Ports and Harbors and the American Association of Port Authorities. (PDF contains 4 pages)
Resumo:
Development pressure throughout the coastal areas of the United States continues to build, particularly in the southeast (Allen and Lu 2003, Crossett et al. 2004). It is well known that development alters watershed hydrology: as land becomes covered with surfaces impervious to rain, water is redirected from groundwater recharge and evapotranspiration to stormwater runoff, and as the area of impervious cover increases, so does the volume and rate of runoff (Schueler 1994, Corbett et al. 1997). Pollutants accumulate on impervious surfaces, and the increased runoff with urbanization is a leading cause of nonpoint source pollution (USEPA 2002). Sediment, chemicals, bacteria, viruses, and other pollutants are carried into receiving water bodies, resulting in degraded water quality (Holland et al. 2004, Sanger et al. 2008). (PDF contains 5 pages)
Resumo:
Climate change has rapidly emerged as a significant threat to coastal areas around the world. While uncertainty regarding distribution, intensity, and timescale inhibits our ability to accurately forecast potential impacts, it is widely accepted that changes in global climate will result in a variety of significant environmental, social, and economic impacts. Coastal areas are particularly vulnerable to the effects of climate change and the implications of sea-level rise, and coastal communities must develop the capacity to adapt to climate change in order to protect people, property, and the environment along our nation’s coasts. The U.S. coastal zone is highly complex and variable, consisting of several regions that are characterized by unique geographic, economic, social and environmental factors. The degree of risk and vulnerability associated with climate change can vary greatly depending on the exposure and sensitivity of coastal resources within a given area. The ability of coastal communities to effectively adapt to climate change will depend greatly on their ability to develop and implement feasible strategies that address unique local and regional factors. A wide variety of resources are available to assist coastal states in developing their approach to climate change adaptation. However, given the complex and variable nature of the U.S. coastline, it is unlikely that a single set of guidelines can adequately address the full range of adaptation needs at the local and regional levels. This panel seeks to address some of the unique local and regional issues facing coastal communities throughout the U.S. including anticipated physical, social, economic and environmental impacts, existing resources and guidelines for climate change adaptation, current approaches to climate change adaptation planning, and challenges and opportunities for developing adaptation strategies. (PDF contains 4 pages)