983 resultados para ASSEMBLED MOLECULAR NANOSTRUCTURE
Resumo:
The electrochemical characteristics of the AA2024 aluminium alloy modified with octadecyltrimethoxysilane (ODTMS) + polyaniline (PANi) and propiltrimethoxysilane (PTMS) + (PANi) were studied in the present work. The results show that the different protective coatings shift the values of corrosion and pit potentials to more positive values making the system nobler and indicate that the double film ODTMS + PANi present the best protection against corrosion characteristics, that is probably due to the two contributions: anodic protection associated with the barrier effect.
Resumo:
This study describes the synthesis of novel biological hybrid materials, where 3D structures were obtained using gold nanoparticles (AuNps) and methionine (Met) in a one-step procedure in aqueous media. The type of nanostructure can be controlled by tuning the intermolecular interactions between Met and AuNp, which strongly depends on the pH used for the synthesis. Computational simulation using the density-functional theory (DFT) showed that the AuNp - Met 3D structures are formed upon reorientation of Met molecules so that the backbone amine groups interact via H-bonds. These findings were experimentally confirmed using FTIR and UV-vis spectroscopy. Crown Copyright (C) 2008 Published by Elsevier B. V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electrochemical analyses on confined electroactive molecular layers, herein exemplified with electroactive self-assembled monolayers, sample current contributions that are significantly influenced by additional nonfaradaic and uncompensated resistance effects that, though unresolved, can strongly distort redox analysis. Prior work has shown that impedance-derived capacitance spectroscopy approaches can cleanly resolve all contributions generated at such films, including those which are related to the layer dipolar/electrostatic relaxation characteristics. We show herein that, in isolating the faradaic and nonfaradaic contributions present within an improved equivalent circuit description of such interfaces, it is possible to accurately simulate subsequently observed cyclic voltammograms (that is, generated current versus potential patterns map accurately onto frequency domain measurements). Not only does this enable a frequency-resolved quantification of all components present, and in so doing, a full validation of the equivalent circuit model utilized, but also facilitates the generation of background subtracted cyclic voltammograms remarkably free from all but faradaic contributions. © 2012 American Chemical Society.
Resumo:
Nanostructured films of dioctadecyldimethylammonium bromide (DODAB) and nickel tetrasulfonated phthalocyanine (NiTsPc) were layer-by-layer (LbL) assembled to achieve a synergistic effect considering the distinct properties of both materials. Prior to LbL growth, the effect of NiTsPc on the structure of DODAB vesicles in aqueous medium was investigated by differential scanning calorimetry (DSC). Therefore, DODAB/NiTsPc LbL films were prepared using NiTsPc at concentrations below and above the limit concentration of vesicle formation according to our DSC experiments. As a result, LbL films with distinct nanostructures were obtained, which were studied at micro and nanoscales by micro-Raman and atomic force microscopy, respectively. A linear growth of the LbL films was observed by ultraviolet-visible absorption spectroscopy. However, the bilayer thickness and the surface morphology of the LbL films were radically affected depending on NiTsPc concentration. The electrostatic interaction between DODAB and NiTsPc was identified via Fourier transform infrared (FTIR) absorption spectroscopy as the main driving force responsible for LbL growth. Because LbL films have been widely applied as transducers in sensing devices, DODAB/NiTsPc LbL films having distinct nanostructures were tested as proof-of-principle in preliminary sensing experiments toward dopamine detection using impedance spectroscopy (e-tongue system). The real capacitance vs. dopamine concentration curves were treated using Principal Component Analysis (PCA) and an equivalent electric circuit, revealing the role played by the LbL film nanostructure and the possibility of building calibration curves. © 2013 Elsevier B.V.
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
In this paper, we present a method to order low temperature (LT) self-assembled ferromagnetic In1-xMnxAs quantum dots (QDs) grown by molecular beam epitaxy (MBE). The ordered In1-xMnxAs QDs were grown on top of a non-magnetic In0.4Ga0.6As/GaAs(100) QDs multi-layered structure. The modulation of the chemical potential, due to the stacking, provides a nucleation center for the LT In1-xMnxAs QDs. For particular conditions, such as surface morphology and growth conditions, the In1-xMnxAs QDs align along lines like chains. This work also reports the characterization of QDs grown on plain GaAs(100) substrates, as well as of the ordered structures, as function of Mn content and growth temperature. The substitutional Mn incorporation in the InAs lattice and the conditions for obtaining coherent and incoherent structures are discussed from comparison between Raman spectroscopy and x-ray analysis. Ferromagnetic behavior was observed for all structures at 2K. We found that the magnetic moment axis changes from [110] in In1-xMnxAs over GaAs to [1-10] for the ordered In1-xMnxAs grown over GaAs template. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745904]
Resumo:
In the field of organic thin films, manipulation at the nanoscale can be obtained by immobilization of different materials on platforms designed to enhance a specific property via the layer-by-layer technique. In this paper we describe the fabrication of nanostructured films containing cobalt tetrasulfonated phthalocyanine (CoTsPc) obtained through the layer-by-layer architecture and assembled with linear poly(allylamine hydrochloride) (PAH) and poly(amidoamine) dendrimer (PAMAM) polyelectrolytes. Film growth was monitored by UV-vis spectroscopy following the Q band of CoTsPc and revealed a linear growth for both systems. Fourier transform infrared (FTIR) spectroscopy showed that the driving force keeping the structure of the films was achieved upon interactions of CoTsPc sulfonic groups with protonated amine groups present in the positive polyelectrolyte. A comprehensive SPR investigation on film growth reproduced the deposition process dynamically and provided an estimation of the thicknesses of the layers. Both FTIR and SPR techniques suggested a preferential orientation of the Pc ring parallel to the substrate. The electrical conductivity of the PAH films deposited on interdigitated electrodes was found to be very sensitive to water vapor. These results point to the development of a phthalocyanine-based humidity sensor obtained from a simple thin film deposition technique, whose ability to tailor molecular organization was crucial to achieve high sensitivity.
Resumo:
Synthetic biology is a young field of applicative research aiming to design and build up artificial biological devices, useful for human applications. How synthetic biology emerged in past years and how the development of the Registry of Standard Biological Parts aimed to introduce one practical starting solution to apply the basics of engineering to molecular biology is presented in chapter 1 in the thesis The same chapter recalls how biological parts can make up a genetic program, the molecular cloning tecnique useful for this purpose, and an overview of the mathematical modeling adopted to describe gene circuit behavior. Although the design of gene circuits has become feasible the increasing complexity of gene networks asks for a rational approach to design gene circuits. A bottom-up approach was proposed, suggesting that the behavior of a complicated system can be predicted from the features of its parts. The option to use modular parts in large-scale networks will be facilitated by a detailed and shared characterization of their functional properties. Such a prediction, requires well-characterized mathematical models of the parts and of how they behave when assembled together. In chapter 2, the feasibility of the bottom-up approach in the design of a synthetic program in Escherichia coli bacterial cells is described. The rational design of gene networks is however far from being established. The synthetic biology approach can used the mathematical formalism to identify biological information not assessable with experimental measurements. In this context, chapter 3 describes the design of a synthetic sensor for identifying molecules of interest inside eukaryotic cells. The Registry of Standard parts collects standard and modular biological parts. To spread the use of BioBricks the iGEM competition was started. The ICM Laboratory, where Francesca Ceroni completed her Ph.D, partecipated with teams of students and Chapter 4 summarizes the projects developed.