399 resultados para ASM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a group of low- and ultralow-carbon microalloyed steels containing additions of boron and/or molybdenum to enhance hardenability. Each alloy was subjected to simulated recrystallization and nonrecrystallization rolling schedules, followed by controlled cooling at rates from 0.1 °C/s to about 100 °C/s, and the corresponding continuous-cooling-transformation (CCT) diagrams were constructed. The resultant microstructures ranged from polygonal ferrite (PF) for combinations of slow cooling rates and low alloying element contents, through to bainitic ferrite accompanied by martensite for fast cooling rates and high concentrations of alloying elements. Combined additions of boron and molybdenum were found to be most effective in increasing steel hardenability, while boron was significantly more effective than molybdenum as a single addition, especially at the ultralow carbon content. Severe plastic deformation of the parent austenite (>0.45) markedly enhanced PF formation in those steels in which this microstructural constituent was formed, indicating a significant effective decrease in their hardenability. In contrast, in those steels in which only nonequilibrium ferrite microstructures were formed, the decreases in hardenability were relatively small, reflecting the lack of sensitivity to strain in the austenite of those microstructural constituents forming in the absence of PF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This was a conference oral presentation at the 2002 ASM Annual Scientific Meeting in Melbourne.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of initial grain size on the recrystallization behavior of a type 304 austenitic stainless steel during and following hot deformation was investigated using hot torsion. The refinement of the initial grain size to 8 μm, compared with an initial grain size of 35 μm, had considerable effects on the dynamic recrystallization (DRX) and post-DRX phenomena. For both DRX and post-DRX, microstructural investigations using electron backscattered diffraction confirmed an interesting transition from conventional (discontinuous) to continuous DRX with a decrease in the initial grain size. Also, there were unexpected effects of initial grain size on DRX and post-DRX grain sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fatigue properties of multiphase steels are an important consideration in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation-induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) used to examine the deformed microstructures. It is shown that the higher strain life and cyclic stabilized strength of the TRIP steel can be attributed to an increased yield strength. Despite the presence of significant levels of retained austenite in the TRIP steel, both steels exhibited similar cyclic softening behavior at a range of strain amplitudes due to comparable ferrite volume fractions and yielding characteristics. Both steels formed low-energy dislocation structures in the ferrite during cyclic straining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of Al2O3, MgAl2O4, and MgO has been widely studied in different Al base metal matrix composites, but the studies on thermodynamic aspects of the Al2O3/ MgAl2O4/MgO phase equilibria have been limited to few systems such as Al/Al2O3 and Al/SiC. The present study analyzes the Al2O3/MgAl2O4 and MgAl2O4/MgO equilibria with respect to the temperature and the Mg content in Al/SiO2 system using an extended Miedema model. There is a linear and parabolic variation in Mg with respect to the temperature for MgAl2O4/MgO and Al2O3/MgAl2O4 equilibria, respectively, and the influence of Si and Cu in the two equilibria is not appreciable. The experimental verification has been limited to MgAl2O4/MgO equilibria due to the high Mg content (≥0.5 wt pct) required for composite processing. The study has been carried out on two varieties of Al/SiO2 composites, i.e., Al/Silica gel and Al/Micro silica processed by liquid metallurgy route (stir casting route). MgO is found to be more stable compared to MgAl2O4 at Mg levels ≥5 and 1 wt pct in Al/Silica gel and Al/Micro silica composites, respectively, at 1073 K. MgO is also found to be more stable at lower Mg content (3 wt pct) in Al/Silica gel composite with decreasing particle size of silica gel from 180 micron to submicron and nanolevels. The MgO to MgAl2O4 transformation has taken place through a series of transition phases influenced by the different thermodynamic and kinetic parameters such as holding temperature, Mg concentration in the alloy, holding time, and silica particle size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examines the influence of different contents and types of process control agent (PCA), i.e., stearic acid (SA) and ethylene-bis-stearamide (EBS), on the microstructural evolution and characteristics of Ti-16Sn-4Nb (wt pct) alloy powders and bulk samples. The characterization of the powders and bulk samples was carried out by using chemical analysis, optical microscopy, scanning electron microscopy (SEM) combined with energy-dispersive spectrometry (EDS), and X-ray diffractometry. Results indicated that the powder recovered from the ball milling containers increased with increasing amounts of SA and EBS. Furthermore, adding more SA or EBS to the powder mixture resulted in a considerably smaller particle size, with a flaky-shaped morphology for the given ball milling time. Also, a slightly higher effectiveness was found for EBS when compared to SA. Meanwhile, the addition of both SA and EBS led to a delay in the alloy formation during mechanical alloying (MA) and caused contamination of the material with mainly carbon (C) and oxygen (O). An optimum amount of 1 wt pct PCA led to a good balance between cold welding and fracturing, and thus favored the formation of the titanium alloy. The microstructural observation of the bulk alloy showed a homogeneous distribution of fine Nb-rich ß-phase colonies within the α-Ti matrix with the addition of PCA less than 1 wt pct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The key evidence for understanding the mechanical behavior of advanced high strength steels was provided by atom probe tomography (APT). Chemical overstabilization of retained austenite (RA) leading to the limited transformation-induced plasticity (TRIP) effect was deemed to be the main factor responsible for the low ductility of nanostructured bainitic steel. Appearance of the yield point on the stress-strain curve of prestrained and bake-hardened transformationinduced plasticity steel is due to the unlocking from weak carbon atmospheres of newly formed during prestraining dislocations.