951 resultados para ADIPOSE-DERIVED STEM CELL
Resumo:
Adult stem cells hold many promises for future clinical applications and regenerative medicine. The haematopoietic stem cell (HSC) is the best-characterized somatic stem cell so far, but in vitro expansion has been unsuccessful, limiting the future therapeutic potential of these cells. Here we review recent progress in characterizing the composition of the HSC bone-marrow microenvironment, known as the HSC niche. During homeostasis, HSCs, and therefore putative bone-marrow HSC niches, are located near bone surfaces or are associated with the sinusoidal endothelium. The molecular crosstalk between HSCs and the cellular constituents of these niches is thought to control the balance between HSC self-renewal and differentiation, indicating that future successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem-cell-niche unit.
Resumo:
Background: EATL is a rare subtype of peripheral T-cell lymphomas characterized by primarily intestinal localization and a frequent association with celiac disease. The prognosis is considered to be poor with conventional chemotherapy. Limited data is available on the efficacy of ASCT in this lymphoma subtype. Primary objective: was to study the outcome of ASCT as a consolidation or salvage strategy for EATL. The primary endpoint was overall survival (OS) and progression-free survival (PFS). Eligible patients were > 18 years who had received ASCT between 2000-2010 for EATL that was confirmed by review of written histopathology reports, and had sufficient information on disease history and follow-up available. The search strategy used the EBMT database to identify patients potentially fulfilling the eligibility criteria. An additional questionnaire was sent to individual transplant centres to confirm histological diagnosis (histopathology report or pathology review) as well as updated follow-up data. Patients and transplant characteristics were compared between groups using X2 test or Fisher's exact test for categorical variables and t-test or Mann-Whiney U-test for continuous variables. OS and PFS were estimated using the Kaplan-Meier product-limit estimate and compared by the log-rank test. Estimates for non-relapse mortality (NRM) and relapse or progression were calculated using cumulative incidence rates to accommodate competing risk and compared to Gray's test. Results: Altogether 138 patients were identified. Updated follow-up data was received from 74 patients (54 %) and histology report from 54 patients (39 %). In ten patients the diagnosis of EATL could not be adequately verified. Thus the final analysis included 44. There were 24 males and 20 females with a median age of 56 (35-72) years at the time of transplant. Twenty-five patients (57 %) had a history of celiac disease. Disease stage was I in nine patients (21 %), II in 14 patients (33 %) and IV in 19 patients (45 %). Twenty-four patients (55 %) were in the first CR or PR at the time of transplant. BEAM was used as a high-dose regimen in 36 patients (82 %) and all patients received peripheral blood grafts. The median follow-up for survivors was 46 (2-108) months from ASCT. Three patients died early from transplant-related reasons translating into a 2-year non-relapse mortality of 7 %. Relapse incidence at 4 years after ASCT was 39 %, with no events occurring beyond 2.5 years after ASCT. PFS and OS were 54 % and 59 % at four years, respectively. There was a trend for better OS in patients transplanted in the first CR or PR compared to more advanced disease status (70 % vs. 43 %, p=0.053). Of note, patients with a history of celiac disease had superior PFS (70 % vs. 35 %, p=0.02) and OS (70 % vs. 45 %, p=0.052) whilst age, gender, disease stage, B-symptoms at diagnosis or high-dose regimen were not associated with OS or PFS. Conclusions: This study shows for the first time in a larger patient sample that ASCT is feasible in selected patients with EATL and can yield durable disease control in a significant proportion of the patients. Patients transplanted in first CR or PR appear to do better than those transplanted later. ASCT should be considered in EATL patients responding to initial therapy.
Resumo:
Stem cell factor (SCF) is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.
Resumo:
Stratified epithelia of mammals contain adult stem/progenitor cells that are instrumental for renewal, regeneration and repair. We have recently demonstrated, using clonal and functional analysis, that all stratified epithelia contain clonogenic stem cells that can respond to skin morphogenetic signals, while cells obtained from simple or pseudo-stratified epithelia cannot. A genome-wide expression analysis favors multilineage priming rather than reprogramming. Collectively, these observations are reminiscent of epithelial metaplasia, a phenomenon in which a cell adopts the phenotype of another epithelial cell, often in response to repeated environmental stress, e.g. smoking, alcohol and micro-traumatisms. Furthermore, they support the notion that metaplasia results from the expression of an unseen potency, revealed by an environmental deficiency. The thymus supposedly contains only progenitor epithelial cells but no stem cells. We have demonstrated that the thymus also contains a small population of clonogenic cells that can function as bona fide multipotent hair follicle stem cells in response to an inductive skin microenvironment and a genome-wide expression analysis indicates that it correlates with robust changes in the expression of genes important for thymus identity. Hence, multilineage priming or reprogramming can account for the fate change of epithelial stem/progenitor cells in response to a varying microenvironment.
Resumo:
Objective: Cultured autologous epidermal stem cells are used to treat extensively burned patients. However, engraftment is variable and it is fundamental to know 1- how many stem cells survive the stress of transplantation and 2- how many stem cells are needed for long-term self-renewal of the regenerated epidermis. Therefore, we have recapitulated the transplantation of autologous cultured epidermal stem cells in the minipig to investigate the cellular and molecular mechanisms involved in engraftment. Methods: Pig keratinocytes were cultivated according to the protocol used in human epidermal cell therapy. Human surgical procedures were adapted to the pig. Engraftment was evaluated clinically and by histology. The presence of epidermal stem cells was evaluated by clonal analysis. The presence of dividing or apoptotic cells was revealed by Ki67 and cleaved-caspase3 immunostaining respectively. Results: The skin of the pig closely resembles human skin and contains clonogenic keratinocytes that can be serially cultivated, cloned or transduced with a gene encoding GFP (Green Fluorescent Protein) by means of recombinant retroviral vectors. Cultured epidermal autografts can be successfully transplanted and their behavior recapitulate our observations in the human. Our experiments confirm that the number of epidermal stem cells rapidly decreases following transplantation. Most importantly, the regenerated epithelium contains dividing cells but little apoptotic cells, thus indicating that transplanted stem cells are pushed toward differentiation in response to the transplantation procedure. Conclusions: The minipig model is extremely useful to investigate stem cell fate during transplantation in human. Understanding engraftment is crucial to improve cell therapy and to design a more efficient generation of epidermal stem cell based products.
Resumo:
Cultured human epidermal keratinocyte stem cells (holoclones) are crucial for regenerative medicine for burns and genetic disorders. In serial culture, holoclones progressively lose their proliferative capacity to become transient amplifying cells with limited growth (paraclones), a phenomenon termed clonal conversion. Although it negatively impacts the culture lifespan and the success of cell transplantation, little is known on the molecular mechanism underlying clonal conversion. Here, we show that holoclones and paraclones differ in their actin filament organization, with actin bundles distributed radially in holoclones and circumferentially in paraclones. Moreover, actin organization sets the stage for a differing response to epidermal growth factor (EGF), since EGF signalling induces a rapid expansion of colony size in holoclones and a significant reduction in paraclones. Furthermore, inhibition of PI3K or Rac1 in holoclones results in the reorganization of actin filaments in a pattern that is similar to that of paraclones. Importantly, continuous Rac1 inhibition in holoclones results in clonal conversion and reduction of growth potential. Together, our data connect loss of stem cells to EGF-induced colony dynamics governed by Rac1.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
BACKGROUND Although Hodgkin's lymphoma is a highly curable disease with modern chemotherapy protocols, some patients are primary refractory or relapse after first-line chemotherapy or even after high-dose therapy and autologous stem cell transplantation. We investigated the potential role of allogeneic stem cell transplantation in this setting. DESIGN AND METHODS In this phase II study 92 patients with relapsed Hodgkin's lymphoma and an HLA-identical sibling, a matched unrelated donor or a one antigen mismatched, unrelated donor were treated with salvage chemotherapy followed by reduced intensity allogeneic transplantation. Fourteen patients showed refractory disease and died from progressive lymphoma with a median overall survival after trial entry of 10 months (range, 6-17). Seventy-eight patients proceeded to allograft (unrelated donors, n=23). Fifty were allografted in complete or partial remission and 28 in stable disease. Fludarabine (150 mg/m(2) iv) and melphalan (140 mg/m(2) iv) were used as the conditioning regimen. Anti-thymocyte globulin was additionally used as graft-versus-host-disease prophylaxis for recipients of grafts from unrelated donors. RESULTS The non-relapse mortality rate was 8% at 100 days and 15% at 1 year. Relapse was the major cause of failure. The progression-free survival rate was 47% at 1 year and 18% at 4 years from trial entry. For the allografted population, the progression-free survival rate was 48% at 1 year and 24% at 4 years. Chronic graft-versus-host disease was associated with a lower incidence of relapse. Patients allografted in complete remission had a significantly better outcome. The overall survival rate was 71% at 1 year and 43% at 4 years. CONCLUSIONS Allogeneic stem cell transplantation can result in long-term progression-free survival in heavily pre-treated patients with Hodgkin's lymphoma. The reduced intensity conditioning approach significantly reduced non-relapse mortality; the high relapse rate represents the major remaining challenge in this setting. The HDR-Allo trial was registered in the European Clinical Trials Database (EUDRACT, https://eudract.ema.europa.eu/) with number 02-0036.
Resumo:
Human respiratory syncytial virus (HRSV) causes severe infections among children and immunocompromised patients. We compared HRSV infections among Haematopoietic Stem Cell Transplant program (HSCT) patients and children using direct immunofluorescence (DFA), point-of-care RSV Bio Easy® and a polymerase chain reaction (PCR) assay. Overall, 102 samples from HSCT patients and 128 from children obtained positivity rate of 18.6% and 14.1% respectively. PCR sensitivity was highest mainly on samples collected after five days of symptoms onset. A combination of both DFA and reverse transcriptase-PCR methods for HSCT high-risk patients is the best diagnostic flow for HRSV diagnosis among these patients.
Resumo:
In Europe, the combination of plerixafor + granulocyte colony-stimulating factor is approved for the mobilization of hematopoietic stem cells for autologous transplantation in patients with lymphoma and myeloma whose cells mobilize poorly. The purpose of this study was to further assess the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization in European patients with lymphoma or myeloma. In this multicenter, open label, single-arm study, patients received granulocyte colony-stimulating factor (10 μg/kg/day) subcutaneously for 4 days; on the evening of day 4 they were given plerixafor (0.24 mg/kg) subcutaneously. Patients underwent apheresis on day 5 after a morning dose of granulocyte colony-stimulating factor. The primary study objective was to confirm the safety of mobilization with plerixafor. Secondary objectives included assessment of efficacy (apheresis yield, time to engraftment). The combination of plerixafor + granulocyte colony-stimulating factor was used to mobilize hematopoietic stem cells in 118 patients (90 with myeloma, 25 with non-Hodgkin's lymphoma, 3 with Hodgkin's disease). Treatment-emergent plerixafor-related adverse events were reported in 24 patients. Most adverse events occurred within 1 hour after injection, were grade 1 or 2 in severity and included gastrointestinal disorders or injection-site reactions. The minimum cell yield (≥ 2 × 10(6) CD34(+) cells/kg) was harvested in 98% of patients with myeloma and in 80% of those with non-Hodgkin's lymphoma in a median of one apheresis. The optimum cell dose (≥ 5 × 10(6) CD34(+) cells/kg for non-Hodgkin's lymphoma or ≥ 6 × 10(6) CD34(+) cells/kg for myeloma) was harvested in 89% of myeloma patients and 48% of non-Hodgkin's lymphoma patients. In this prospective, multicenter European study, mobilization with plerixafor + granulocyte colony-stimulating factor allowed the majority of patients with myeloma or non-Hodgkin's lymphoma to undergo transplantation with minimal toxicity, providing further data supporting the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization of hematopoietic stem cells in patients with non-Hodgkin's lymphoma or myeloma.
Resumo:
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and early diagnosis of related clinical diseases, constitute essential measures to improve outcomes. A prospective survey on the incidence and clinical features of HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the impact of this infection on HSCT outcome remains unclear. A rapid test based on real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen and quantify clinical samples for HHV-6. The detection step was based on reaction with TaqMan® hydrolysis probes. A set of previously described primers and probes have been tested to evaluate efficiency, sensitivity and reproducibility. The target efficiency range was 91.4% with linearity ranging from 10-106 copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of plasma. The qPCR assay developed in the present study was simple, rapid and sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this test may be useful as a practical tool to help elucidate the clinical relevance of HHV-6 infection and reactivation in different scenarios and to determine the need for surveillance.
Resumo:
Diabetes is a growing epidemic with devastating human, social and economic impact. It is associated with significant changes in plasma concentrations of lipoproteins. We tested the hypothesis that lipoproteins modulate the function and survival of insulin-secreting cells. We first detected the presence of several receptors that participate in the binding and processing of plasma lipoproteins and confirmed the internalization of fluorescent LDL and HDL particles in insulin-secreting β-cells. Purified human VLDL and LDL particles reduced insulin mRNA levels and β-cell proliferation, and induced a dose-dependent increase in the rate of apoptosis. In mice lacking the LDL receptor, islets showed a dramatic decrease in LDL uptake and were partially resistant to apoptosis caused by LDL. VLDL-induced apoptosis of β-cells involved caspase-3 cleavage and reduction in levels of the c-Jun N-terminal (JNK) Interacting Protein-1 (IB1/JIP-1). In contrast, the pro-apoptotic signaling of lipoproteins was antagonized by HDL particles or by a small peptide inhibitor of JNK. The protective effects of HDL were mediated, in part, by inhibition of caspase-3 cleavage and activation of the protein kinase Akt/PKB. Heart disease is a major cause of morbidity and mortality among patients with diabetes. When heart failure is refractory to medical therapy and cannot be improved by electrical resynchronization, percutaneous angioplasty or coronary graft bypass surgery, heart transplantation remains a "last resort" therapy. Nevertheless, it is limited by the side effects of immunosuppressive drugs and chronic rejection. Localized expression of immunomodulatory genes in the donor organ can create a state of immune privilege within the graft, and was performed in rodent hearts by infecting cells with an adenovirus encoding indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the catabolism of tryptophane. Other strategies are based on genetic manipulation of dendritic cells (DCs) with immunosuppressive genes and in vitro exposure of DCs to agents that prevent their maturation by inflammatory cytokines. Finally, we used 5-bromo-2'-deoxyuridine, which is incorporated into DNA and diluted with cell division, to identify long-term label retaining cells in the adult rodent heart. The majority of these cells were positive for the stem cell antigen-1 (Sca-1) and negative for the endothelial precursor marker CD31. They formed cardiospheres in vitro and showed differentiation potential into mesenchymal cell lineages. When cultured in cardiomyogenic differentiation medium, they expressed cardiac-specific genes. Taken together, these data provide evidence of slow-cycling stem cells in the rodent heart. Chronic shortage of donor organs opens the way to cardiac stem cell therapy in humans, although the long way from animal experimentation to routine therapy in patients may still take several years. - Du diabète de type 2 à la maladie coronarienne : trois études sur les dysfonctions de la cellule sécrétrice d'insuline induites par les dyslipidémies, l'immunomodulation dans la transplantation cardiaque, et la thérapie par des cellules souches myocardiques. Le diabète de type 2 a pris les dimensions d'une épidémie, avec des conséquences sociales et économiques dont nous n'avons pas encore pris toute la mesure. La maladie s'accompagne souvent d'une dyslipidémie caractérisée par une hypertriglycéridémie, des taux abaissés de cholestérol HDL, et des concentrations de cholestérol LDL à la limite supérieure de ce qui est considéré comme acceptable. L'hypothèse à la base de cette étude est qu'une modification des taux plasmatiques de lipoprotéines pourrait avoir une influence directe sur la cellule β sécrétrice d'insuline en modifiant sa fonction, sa durée de vie et son taux de régénération. Dans un premier temps, nous avons mis en évidence, sur la cellule β, la présence de plusieurs récepteurs impliqués dans la captation des lipoprotéines. Nous avons confirmé la fonctionnalité de ces récepteurs en suivant l'internalisation de LDL et de HDL marqués. En présence de VLDL ou de LDL humains, nous avons observé une diminution de la transcription du gène de l'insuline, une prolifération cellulaire réduite, et une augmentation de l'apoptose, toutes fonctions de la dose et du temps d'exposition. L'apoptose induite par les VLDL passe par une activation de la caspase-3 et une réduction du taux de la protéine IB1/JIP-1 (Islet Brain1/JNK Interacting Protein 1), dont une mutation est associée à une forme monogénique de diabète de type 2. Par opposition, les HDL, ainsi que des peptides inhibiteurs de JNK, sont capables de contrer la cascade pro-apoptotique déclenchée, respectivement, par les LDL et les VLDL. Ces effets protecteurs comprennent l'inhibition du clivage de la caspase-3 et l'activation de la protéine kinase Akt/PKB. En conclusion, les lipoprotéines sont des éléments clés de la survie de la cellule β, et pourraient contribuer au dysfonctionnement observé dans le pancréas endocrine au cours du développement du diabète. La maladie cardiaque, et plus particulièrement la maladie coronarienne, est une cause majeure de morbidité et de mortalité chez les patients atteints de diabète. Plusieurs stratégies sont utilisées quotidiennement pour pallier les atteintes cardiaques: traitements médicamenteux, électromécaniques par resynchronisation électrique, ou communément appelés « interventionnels » lorsqu'ils font appel à l'angioplastie percutanée. La revascularisation du myocarde par des pontages coronariens donne également de très bons résultats dans certaines situations. Il existe toutefois des cas où plus aucune de ces approches n'est suffisante. La transplantation cardiaque est alors la thérapie de choix pour un nombre restreint de patients. La thérapie génique, en permettant l'expression locale de gènes immunomodulateurs dans l'organe greffé, permet de diminuer les réactions de rejet inhérentes à toute transplantation (à l'exception de celles réalisées entre deux jumeaux homozygotes). Nous avons appliqué chez des rongeurs cette stratégie en infectant le coeur greffé avec un adénovirus codant pour l'enzyme indoleamine 2,3-dioxygénase (IDO), une enzyme clé dans le catabolisme du tryptophane. Nous avons procédé de manière identique in vitro en surexprimant IDO dans les cellules dendritiques, dont le rôle est de présenter les antigènes aux lymphocytes Τ du receveur. Des expériences similaires ont été réalisées en traitant les cellules dendritiques avec des substances capables de prévenir, en partie du moins, leur maturation par des agents pro-inflammatoires. Finalement, nous avons exploré une stratégie utilisée couramment en hématologie, mais qui n'en est encore qu'à ses débuts au niveau cardiaque : la thérapie par des cellules souches. En traitant des rongeurs avec un marqueur qui s'incorpore dans l'ADN nucléaire, le 5-bromo- 2'-deoxyuridine, nous avons identifié une population cellulaire se divisant rarement, positive en grande partie pour l'antigène embryonnaire Sca-1 et négative pour le marqueur endothélial CD31. En culture, ces cellules forment des cardiosphères et sont capables de se différencier dans les principaux types tissulaires mésenchymateux. Dans un milieu de differentiation adéquat, ces cellules expriment des gènes cardiomyocytaires. En résumé, ces données confirment la présence chez le rongeur d'une population résidente de précurseurs myocardiques. En addenda, on trouvera deux publications relatives à la cellule β productrice d'insuline. Le premier article démontre le rôle essentiel joué par la complexine dans l'insulino-sécrétion, tandis que le second souligne l'importance de la protéine IB1/JIP-1 dans la protection contre l'apoptose de la cellule β induite par certaines cytokines.