981 resultados para 620400 Primary Products From Plants
Resumo:
The research investigates the fuel property variations associated with the time of harvest and the duration of storage of Miscanthus x giganteus over a one year period. The crop has been harvested at three different times: early (September 2009), conventional (April 2010) and late (June 2010). Once harvested the crop was baled and stored. Biomass properties of samples taken from different storage zones were compared. The thermochemical properties have been investigated using a range of analytical equipment including thermogravimetric analysis (TGA) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). In addition, bio-oil has been produced from the early, conventional and late harvest using a laboratory scale (300gh) fast pyrolysis unit. The potential organic liquid yield (ondry basis, also excluding the reaction water generated) based on the laboratory fast pyrolysis processing undertaken in this study, was found to vary between 2.82 and 3.18 dry tha for the early and the late harvest respectively. The bio-oil organic yield was reduced by approximately 11% (0.36tha) between the early and the late harvest. Char yield was also reduced by approximately 18% (0.61tha). The highest gas yield (18.03%-1.60tha) was observed for the conventional harvest. Gas chromatography-mass spectrometry (GC-MS) analysis of the bio-oil shows that levoglucosan, methylbenzaldehyde and 1,2-benzenediol all increase as a consequence of delayed harvest. It was also observed that by delaying the harvest time the O:C atomic ratio is reduced and a more carbonaceous feedstock is produced. © 2013 Elsevier Ltd.
Resumo:
Novel reaction pathways for the hypervalent iodine-mediated oxidation of bioactive phenols containing extended conjugated π-systems are described. Oxidation of 4-hydroxystilbenes in methanol using a hypervalent iodine-based oxidant led to the formal 1,2-addition of methoxy groups across the central stilbene double bond. Treatment of the structurally related 4-hydroxyisoflavone with di(trifluoroacetoxy)iodobenzene leads to the surprising formation of 2,4′-dihydroxybenzil. Potential mechanisms for these new reaction pathways are discussed, and the X-ray crystal structure of 2,4′-dihydroxybenzil is presented. In contrast, oxidation of the corresponding 3-hydroxystilbenes and 3-hydroxyisoflavone led to conventional dienone oxidation products. The antitumour implications of these oxidation processes are briefly highlighted; the novel 4-substituted phenolic oxidation products were found to be inactive in terms of in vitro antitumour cellular activity, whereas the 3-substituted phenol products gave novel agents with potent and enhanced antitumour activity in the HCT 116 cancer cell line. © The Royal Society of Chemistry 2005.
Resumo:
Cyanobacteria are photosynthetic prokaryotes that can be found in freshwater and marine environments as well as in soil. These organisms produce a variety of different biologically active compounds exhibiting anti-bacterial, anti-fungal and anti-cancer properties among others. In this study, cyanobacterial isolates were screened for their ability to produce extracellular antibacterial products. Cyanobacteria were isolated from fresh water and soil samples collected in the Pembroke Pines, FL area. Twenty- seven strains of cyanobacteria were isolated belonging to the following genera: Limnothrix, Nostoc, Fischerella, Anabaena, Pseudoanabaena, Lyngbya, Leptolyngbya, Tychonema, and Calothrix. Individual strains were grown in liquid culture in laboratory conditions. Following 14-day cultivation, the culture liquid was filtered and tested for activity against the following bacteria: Escherichia coli, Bacillus megatarium, Staphylococcus aureus, and Micrococcus luteus. Among all genera of cyanobacterial strains tested, Fischerella exhibited the greatest inhibitory activity. An attempt was made to isolate the active compound from the culture liquid of the active strains. Lipophilic extracts from culture liquid were obtained from three selected Fischerella strains. The extracts proved to have varying levels of activity against the tested bacteria. Inhibitory activity from all three Fischerella strains was detected against B. megatarium and M luteus. The only strain that was active against S. aureus was Fischerella sp. 114-12 while none of the extracts showed activity against E. coli. This kind of screening has potential pharmaceutical and agricultural benefits, including possible discovery of novel antibiotics.
Resumo:
Single-cell oils (SCO) have been considered a promising source of 3rd generation biofuels mainly in the final form of biodiesel. However, its high production costs have been a barrier towards the commercialization of this commodity. The fast growing yeast Rhodosporidium toruloides NCYC 921 has been widely reported as a potential SCO producing yeast. In addition to its well-known high lipid content (that can be converted into biodiesel), is rich in high value added products such as carotenoids with commercial interest. The process design and integration may contribute to reduce the overall cost of biofuels and carotenoid production and is a mandatory step towards their commercialization. The present work addresses the biomass disruption, extraction, fractionation and recovery of products with special emphasis on high added valued carotenoids (beta-carotene, torulene, torularhodin) and fatty acids directed to biodiesel. The chemical structure of torularhodin with a terminal carboxylic group imposes an additional extra challenge in what concern its separation from fatty acids. The proposed feedstock is fresh biomass pellet obtained directly by centrifugation from a 5L fed-batch fermentation culture broth. The use of a wet instead of lyophilised biomass feedstock is a way to decrease processing energy costs and reduce downstream processing time. These results will contribute for a detailed process design. Gathered data will be of crucial importance for a further study on Life-Cycle Assessment (LCA).
Resumo:
The creation of thermostable enzymes has wide-ranging applications in industrial, scientific, and pharmaceutical settings. As various stabilization techniques exist, it is often unclear how to best proceed. To this end, we have redesigned Cel5A (HjCel5A) from Hypocrea jecorina (anamorph Trichoderma reesei) to comparatively evaluate several significantly divergent stabilization methods: 1) consensus design, 2) core repacking, 3) helix dipole stabilization, 4) FoldX ΔΔG approximations, 5) Triad ΔΔG approximations, and 6) entropy reduction through backbone stabilization. As several of these techniques require structural data, we initially solved the first crystal structure of HjCel5A to 2.05 Å. Results from the stabilization experiments demonstrate that consensus design works best at accurately predicting highly stabilizing and active mutations. FoldX and helix dipole stabilization, however, also performed well. Both methods rely on structural data and can reveal non-conserved, structure-dependent mutations with high fidelity. HjCel5A is a prime target for stabilization. Capable of cleaving cellulose strands from agricultural waste into fermentable sugars, this protein functions as the primary endoglucanase in an organism commonly used in the sustainable biofuels industry. Creating a long-lived, highly active thermostable HjCel5A would allow cellulose hydrolysis to proceed more efficiently, lowering production expenses. We employed information gleaned during the survey of stabilization techniques to generate HjCel5A variants demonstrating a 12-15 °C increase in the temperature at which 50% of the total activity persists, an 11-14 °C increase in optimal operating temperature, and a 60% increase over the maximal amount of hydrolysis achievable using the wild type enzyme. We anticipate that our comparative analysis of stabilization methods will prove useful in future thermostabilization experiments.
Resumo:
Purpose - The purpose of this paper is to analyze what transaction costs are acceptable for customers in different investments. In this study, two life insurance contracts, a mutual fund and a risk-free investment, as alternative investment forms are considered. The first two products under scrutiny are a life insurance investment with a point-to-point capital guarantee and a participating contract with an annual interest rate guarantee and participation in the insurer's surplus. The policyholder assesses the various investment opportunities using different utility measures. For selected types of risk profiles, the utility position and the investor's preference for the various investments are assessed. Based on this analysis, the authors study which cost levels can make all of the products equally rewarding for the investor. Design/methodology/approach - The paper notes the risk-neutral valuation calibration using empirical data utility and performance measurement dynamics underlying: geometric Brownian motion numerical examples via Monte Carlo simulation. Findings - In the first step, the financial performance of the various saving opportunities under different assumptions of the investor's utility measurement is studied. In the second step, the authors calculate the level of transaction costs that are allowed in the various products to make all of the investment opportunities equally rewarding from the investor's point of view. A comparison of these results with transaction costs that are common in the market shows that insurance companies must be careful with respect to the level of transaction costs that they pass on to their customers to provide attractive payoff distributions. Originality/value - To the best of the authors' knowledge, their research question - i.e. which transaction costs for life insurance products would be acceptable from the customer's point of view - has not been studied in the above described context so far.
Resumo:
Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.
Resumo:
ABSTRACT The ground pearl, Eurhizococcus brasiliensis, is considered an important pest of vineyards in southern Brazil, with affected plants exhibiting leaf chlorosis, reduction in vigor, fading, and death. This study evaluated the quality of hardwood cuttings produced from plants infected (I) and not infected (NI) by ground pearl. ?Paulsen 1103? (Vitis berlandieri × Vitis rupestris) plants were grown for 29 months in brick-built raised beds either infested or not infested by ground pearl; then, 12 one-year-old branches with a maximum of 12 buds each were cut from each plant, subdivided into three portions (4 buds cutting-1), and subjected to destructive and nondestructive testing. Destructive testing comprised determining fresh and dry weight, length, internode diameters, and percentage of starch. Nondestructive testing comprised assessing the potential for bud sprouting and shoot development. Each mother plant in the I and NI beds was considered a replicate, with a total of 360 cuttings per treatment. It was observed that cuttings from infected plants had significantly lower (P<0.05) internode diameter, length, and fresh and dry weight than those of the uninfected plants. The percentage of starch content of the cuttings did not differ significantly. All cuttings showed the same percentage (100%) of bud breaking and no changes in growth and development of seedlings regardless of source. Given these results, it was concluded that vines of ?Paulsen 1103? infested with ground pearl produce smaller cuttings than those of uninfected plants but with no reduction in bud break percentage or seedling development. Key words: Margarodidae, Vitaceae, insect?plant interaction, carbohydrates. RESUMO A pérola-da-terra, Eurhizococcus brasiliensis, tem sido considerada uma importante praga dos vinhedos no sul do Brasil, sendo que as plantas atacadas manifestam clorose foliar, redução no vigor, definhamento e morte. Este trabalho teve por objetivo avaliar a qualidade de estacas lenhosas produzidas a partir do contraste de videiras infestadas (I) e não infestadas (NI) por pérola-da-terra. Após 29 meses de cultivo em canteiros de alvenaria, em presença ou ausência de pérola-da-terra, cada planta da variedade ?Paulsen 1103? (Vitis berlandieri × Vitis rupestris) foi submetida à retirada de 12 ramos de ano, com no máximo 12 gemas cada, sendo subdivididos em três porções 4 gemas estaca-1) e submetidos a avaliações destrutivas e não destrutivas. As destrutivas consistiram em determinar massas fresca e seca, comprimento, diâmetro de entrenós e percentual de amido. As avaliações não estrutivas consistiram em testar o potencial de brotação e desenvolvimento das estacas. Cada planta matriz dos canteiros I e NI foi considerada uma repetição, totalizando 360 estacas por tratamento. As estacas das plantas infestadas tiveram uma redução (P<0,05), em relação às não infestadas, em diâmetro, comprimento e massas fresca e seca. Não houve contraste significativo do percentual de amido avaliado das estacas. Quanto à brotação, destaca-se que todas as estacas apresentaram o mesmo percentual (100%), independente da origem, sem alterações no desenvolvimento e crescimento das mudas. Diante desses resultados, salienta-se que videiras ?Paulsen 1103? infestadas por pérola-da-terra produzem estacas menores, porém não há comprometimento no percentual de brotação e desenvolvimento das mudas, quando comparadas com plantas não infestadas. Palavras-chave: Margarodidae, Vitaceae, interação inseto-planta, carboidrato
Resumo:
The purpose of this thesis work was the valorization of the main by-products obtained from olive oil production chain (wastewater and pomace) and their utilization in innovative food formulation. In the first part of the thesis, an olive mill wastewater extract rich in phenols were used in the formulation of 3 innovative meat products: beef hamburgers, cooked ham and würstels. These studies confirms that olive mill wastewaters extract rich in phenols could be an alternative for the reduction/total replacement of additives (i.e., nitrites) in ground and cooked meat preparations, which would promote the formulation of healthier clean label products and improve the sustainability of the olive oil industry with a circular economy approach, by further valorizing this olive by-product. In the second part of the thesis, the lipid composition and oxidative stability of a spreadable product obtained from a fermented and biologically de-bittered olive pomace, was assessed during a shelf-life study. This study confirmed that olive pomace represents an excellent ingredient for the formulation of functional foods In the third and last part of the thesis, carried out at the Universidad de Navarra (Pamplona, Spain), during a period abroad (3 months), three extracts obtained from purification of olive mill wastewaters, were subjected to in-vitro digestion and characterized. From the analysis of the three phenolic extracts, it emerged that the most promising extract to be used in the food field is the spry-dried one. Thanks to its formulation containing maltodextrins it manages to maintain its antioxidant capacity even after being underwent to in-vitro digestion. This thesis work is a part of the PRIN 2015 project (PROT: 20152LFKAT) "Olive phenols as multifunctional bioactives for healthier food: evaluation of simplified formulation to obtain safe meat products and new foods with higher functionality", coordinated by University of Perugia.
Resumo:
The PhD research project was a striking example of the enhancement of milling by-product and alternative protein sources from house cricket (Acheta domesticus), conceived as sustainable and renewable sources, to produce innovative food products. During milling processing of wheat and rye, several by-products with high technological and functional potential, are produced. The use of selected microbial consortia, allowed to obtain a pre-fermented ingredient for use in the bakery. The pre-ferments obtained were characterized by a high technological, functional and nutritional value, also interesting from a nutraceutical point of view. Bakery products obtained by the addition of pre-fermented ingredients were characterized by a greater quantity of aromatic molecules and an increase in SCFA, antioxidant activity, total amino acids and total phenols resulting in positive effect on the functionality. Moreover, the industrial scaling-up of pre-ferment and innovative bakery goods production, developed in this research, underlined the technological applicability of pre-fermented ingredients on a large scale. Moreover, the identification of innovative protein sources, can address the request of new sustainable ingredients able to less impact on the environment and to satisfy the food global demand. To upscale the insect production and ensure food safety of insect-based products, biotechnological formulations based on Acheta domesticus powder were optimized. The use of Yarrowia lipolytica in the biotechnological transformation of cricket powder led to the achievement of a cricket-based food ingredient characterized by a reduced content of chitin and an increase of antimicrobial and health-promoting molecules. The innovative bakery products containing cricket-based hydrolysates from Y. lipolytica possessed specific sensory, qualitative and functional characteristics to the final product. Moreover, the combination of Y. lipolytica hydrolysis and baking showed promising results regarding a reduced allergenicity in cricket-based baked products. Thus, the hydrolysate of cricket powder may represent a versatile and promising ingredient in the production of innovative foods.