1000 resultados para 292-3


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shipping list no.: 91-292-P.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotopic studies both of benthic formanifera (Emiliani, 1954, doi:10.1126/science.119.3103.853; Savin et al., 1975, doi:10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2; Shackleton and Kennett, 1975, doi:10.2973/dsdp.proc.29.117.1975; Savin, 1977, doi:10.1146/annurev.ea.05.050177.001535) and shallow-marine carbonates ( Dorman, 1966; Devereux, 1967; Buchart, 1978, doi:10.1038/275121a0) have provided a useful monitor of marine palaeotemperatures. The Deep Sea Drilling Project (DSDP) has provided cores from many ocean basins to conduct detailed stable isotopic and palaeoceanographic studies of the Cenozoic and late Mesozoic. DSDP Sites 277 and 292, separated by ~60° latitude in Palaeogene times, each record an 18O enrichment in benthic foraminifera of nearly 1 per mil beginning at the Eocene-Oligocene boundary. Planktonic foraminiferal trends are similar to benthic trends in the high latitude southwest Pacific Ocean, but tropical planktonics show only a minor (~0.3 per mil) increase which may reflect a change in seawater composition. These results suggest a sudden cooling of Pacific deep waters and high latitude surface waters forms a useful stratigraphic marker for the Eocene-Oligocene boundary. This boundary is particularly important because of its association with several worldwide palaeo-oceanographic and biogeographic changes. These include a sudden drop in the calcite compensation depth of 1-2 km (van Andel et al., 1975; van Andel, 1975, doi:10.1016/0012-821X(75)90086-2); a decrease in planktonic microfossil diversity (Lipps, 1970, 10.2307/2406711; Kennett, 1978, doi:10.1016/0377-8398(78)90017-8; Sancetta, 1979, doi:10.1016/0377-8398(79)90025-2); a change in planktonic biogeographic patterns (Kennett, 1978, doi:10.1016/0377-8398(78)90017-8; Sancetta, 1979, doi:10.1016/0377-8398(79)90025-2; Haq and Lohmann, 1976, doi:10.1016/0377-8398(76)90008-6); and increased erosion of deep-sea sediments over wide areas (Kennet et al., 1972; Moore et al., 1978).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.