880 resultados para 090904 Navigation and Position Fixing
Resumo:
Passengers navigating through airports can experience confusion or become lost, resulting in dissatisfaction, missed flights and flight delays. Passengers moving through airports are required to make many navigation decisions, for example to find the correct check-in desk or find the correct boarding gate. Prior experience of using the airports is likely to enable intuitive navigation, however limited research on this topic currently exists. In this paper we investigate passenger navigation by observing 30 participants at one international airport as they moved from check-in to a departure gate. The results indicate that passengers do spend time navigating intuitively through the airport, and that there is a positive correlation between intuitive navigation and airport familiarity. It was also found that participants with lower airport familiarity spend a greater percentage of overall navigation time searching and assessing/acquiring information than high familiarity participants. These findings provide evidence that passengers with higher airport familiarity have a greater understanding of the process, have a better understanding of what information to look for and use this familiarity to navigate intuitively. Findings from this research will have design implications for both current, and future airport terminals and other large spaces that people navigate through.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc... Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.
Resumo:
This paper describes the experimental evaluation of a novel Autonomous Surface Vehicle capable of navigating complex inland water reservoirs and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran is capable of collecting water column profiles whilst in motion. It is also directly integrated with a reservoir scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper describes the onboard vehicle navigation and control algorithms as well as obstacle avoidance strategies. Experimental results are shown demonstrating its ability to maintain track and avoid obstacles on a variety of large-scale missions and under differing weather conditions, as well as its ability to continuously collect various water quality parameters complimenting traditional manual monitoring campaigns.
Resumo:
The effect of the physicochemical parameters of water and soil on the distribution of nitrogen-fixing bacteria and their nitrogen-fixing capacity was studied. Four species of nitrogen-fixing bacteria, e. g. Azotobacter chroococcum, A. vinelandii, A. beijerinckii and A. armeniacus, were recorded from water and soil samples of Mumbai coast. A higher number of bacterial populations were observed in sediment than in water samples. A positive correlation was observed between the dissolved organic matter and nitrogen fixing bacterial populations of water as well as between available phosphorus and the nitrogen-fixing bacteria of sediment. The nitrogen-fixing capacity of A. chroococcum was found to be 1.076 nmol C sub(2) H sub(4)/l/d and that of A. vinelandii was 0.965 nmol C sub(2) H sub(4)/l/d. Station 1 showed higher level of nitrogenase activity in comparison to other four stations.
Resumo:
The transient interaction between a refraction index grating and light beams during simultaneous writing and thermal fixing of a photorefractive hologram is investigated. With a diffusion- and photovoltaic-dominated carrier transport mechanism and carrier thermal activation (temperature dependent) considered in Fe:LiNbO3 crystal, from the standpoint of field-material coupling, the theoretical thermal fixing time and the space-charge field buildup, spatial distribution, and temperature dependence are given numerically by combining the band transport model with mobile ions with the coupled-wave equation
Resumo:
Efficient Navigation is essential for the user-acceptance of the Virtual Environments (VEs), but it is also inherently, a difficult task to perform. Resulting research in the area provides users with great variety of navigation assistance in VEs however it is still known to be inadequate, complex and suffers through many limitations. In this paper we discuss the task of navigation in the virtual environments and record the wayfinding assistance currently available for the VEs. The paper introduces taxonomy of navigation and categorizes the aids on basis of the functions performed. The paper provides views on current work performed in the area of non-speech auditory aids. Further we conclude by providing views on the important areas that require further investigation and research.
Resumo:
This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.
Resumo:
A Gram-negative, rod-shaped, non-spore-forming and nitrogen-fixing bacterium, designated ICB 89(T), was isolated from stems of a Brazilian sugar cane variety widely used in organic farming. 16S rRNA gene sequence analysis revealed that strain ICB 89(T) belonged to the genus Stenotrophomonas and was most closely related to Stenotrophomonas maltophilia LMG 958(T), Stenotrophomonas rhizophila LMG 22075(T), Stenotrophomonas nitritireducens L2(T), [Pseudomonas] geniculata ATCC 19374(T), [Pseudomonas] hibiscicola ATCC 19867(T) and [Pseudomonas] beteli ATCC 19861(T). DNA-DNA hybridization together with chemotaxonomic data and biochemical characteristics allowed the differentiation of strain ICB 89(T) from its nearest phylogenetic neighbours. Therefore, strain ICB 89(T) represents a novel species, for which the name Stenotrophomonas pavanii sp. nov. is proposed. The type strain is ICB 89(T) (=CBMAI 564(T) =LMG 25348(T)).
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.
Resumo:
Specimens of Leptodactylus mystacinus from Brazil were karyotyped with conventional and differential staining. The 2n = 22 karyotype is similar to that found for the majority of the Leptodactylus, the karyotypic conservatism also confirmed by the similarity of the replication banding patterns with those previously described. L. mystacinus has a small amount of C-banded heterochromatin, located mainly at the centromeres, although telomeric or interstitial bands have also been noticed. With DA/CMA(3) some chromosome regions showed slightly bright fluorescence, and with DA/DAPI, no particular AT-rich repetitive region was observed. Silver staining showed an extensive inter- and intraindividual variation in the number and position of Ag-positive regions, in 1p, 4p, 8p, 8q, and 11p. Nevertheless, FISH using rDNA probes confirmed only the signals on the short arms of chromosomes 4 and 8 as true NORs. The remaining silver stained regions are probably due to the heterochromatin with some affinity to the Ag-staining. Phylogenetic analysis based on partial cytochrome b sequence revealed that L. mystacinus forms a basal branch, so that the presence of multiple NORs in pairs 4 and 8 in this species indicates an autapomorphy.
Resumo:
The effect of the ionosphere on the signals of Global Navigation Satellite Systems (GNSS), such as the Global Positionig System (GPS) and the proposed European Galileo, is dependent on the ionospheric electron density, given by its Total Electron Content (TEC). Ionospheric time-varying density irregularities may cause scintillations, which are fluctuations in phase and amplitude of the signals. Scintillations occur more often at equatorial and high latitudes. They can degrade navigation and positioning accuracy and may cause loss of signal tracking, disrupting safety-critical applications, such as marine navigation and civil aviation. This paper addresses the results of initial research carried out on two fronts that are relevant to GNSS users if they are to counter ionospheric scintillations, i.e. forecasting and mitigating their effects. On the forecasting front, the dynamics of scintillation occurrence were analysed during the severe ionospheric storm that took place on the evening of 30 October 2003, using data from a network of GPS Ionospheric Scintillation and TEC Monitor (GISTM) receivers set up in Northern Europe. Previous results [1] indicated that GPS scintillations in that region can originate from ionospheric plasma structures from the American sector. In this paper we describe experiments that enabled confirmation of those findings. On the mitigation front we used the variance of the output error of the GPS receiver DLL (Delay Locked Loop) to modify the least squares stochastic model applied by an ordinary receiver to compute position. This error was modelled according to [2], as a function of the S4 amplitude scintillation index measured by the GISTM receivers. An improvement of up to 21% in relative positioning accuracy was achieved with this technnique.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.
Diseño de algoritmos de guerra electrónica y radar para su implementación en sistemas de tiempo real
Resumo:
Esta tesis se centra en el estudio y desarrollo de algoritmos de guerra electrónica {electronic warfare, EW) y radar para su implementación en sistemas de tiempo real. La llegada de los sistemas de radio, radar y navegación al terreno militar llevó al desarrollo de tecnologías para combatirlos. Así, el objetivo de los sistemas de guerra electrónica es el control del espectro electomagnético. Una de la funciones de la guerra electrónica es la inteligencia de señales {signals intelligence, SIGINT), cuya labor es detectar, almacenar, analizar, clasificar y localizar la procedencia de todo tipo de señales presentes en el espectro. El subsistema de inteligencia de señales dedicado a las señales radar es la inteligencia electrónica {electronic intelligence, ELINT). Un sistema de tiempo real es aquel cuyo factor de mérito depende tanto del resultado proporcionado como del tiempo en que se da dicho resultado. Los sistemas radar y de guerra electrónica tienen que proporcionar información lo más rápido posible y de forma continua, por lo que pueden encuadrarse dentro de los sistemas de tiempo real. La introducción de restricciones de tiempo real implica un proceso de realimentación entre el diseño del algoritmo y su implementación en plataformas “hardware”. Las restricciones de tiempo real son dos: latencia y área de la implementación. En esta tesis, todos los algoritmos presentados se han implementado en plataformas del tipo field programmable gate array (FPGA), ya que presentan un buen compromiso entre velocidad, coste total, consumo y reconfigurabilidad. La primera parte de la tesis está centrada en el estudio de diferentes subsistemas de un equipo ELINT: detección de señales mediante un detector canalizado, extracción de los parámetros de pulsos radar, clasificación de modulaciones y localization pasiva. La transformada discreta de Fourier {discrete Fourier transform, DFT) es un detector y estimador de frecuencia quasi-óptimo para señales de banda estrecha en presencia de ruido blanco. El desarrollo de algoritmos eficientes para el cálculo de la DFT, conocidos como fast Fourier transform (FFT), han situado a la FFT como el algoritmo más utilizado para la detección de señales de banda estrecha con requisitos de tiempo real. Así, se ha diseñado e implementado un algoritmo de detección y análisis espectral para su implementación en tiempo real. Los parámetros más característicos de un pulso radar son su tiempo de llegada y anchura de pulso. Se ha diseñado e implementado un algoritmo capaz de extraer dichos parámetros. Este algoritmo se puede utilizar con varios propósitos: realizar un reconocimiento genérico del radar que transmite dicha señal, localizar la posición de dicho radar o bien puede utilizarse como la parte de preprocesado de un clasificador automático de modulaciones. La clasificación automática de modulaciones es extremadamente complicada en entornos no cooperativos. Un clasificador automático de modulaciones se divide en dos partes: preprocesado y el algoritmo de clasificación. Los algoritmos de clasificación basados en parámetros representativos calculan diferentes estadísticos de la señal de entrada y la clasifican procesando dichos estadísticos. Los algoritmos de localization pueden dividirse en dos tipos: triangulación y sistemas cuadráticos. En los algoritmos basados en triangulación, la posición se estima mediante la intersección de las rectas proporcionadas por la dirección de llegada de la señal. En cambio, en los sistemas cuadráticos, la posición se estima mediante la intersección de superficies con igual diferencia en el tiempo de llegada (time difference of arrival, TDOA) o diferencia en la frecuencia de llegada (frequency difference of arrival, FDOA). Aunque sólo se ha implementado la estimación del TDOA y FDOA mediante la diferencia de tiempos de llegada y diferencia de frecuencias, se presentan estudios exhaustivos sobre los diferentes algoritmos para la estimación del TDOA, FDOA y localización pasiva mediante TDOA-FDOA. La segunda parte de la tesis está dedicada al diseño e implementación filtros discretos de respuesta finita (finite impulse response, FIR) para dos aplicaciones radar: phased array de banda ancha mediante filtros retardadores (true-time delay, TTD) y la mejora del alcance de un radar sin modificar el “hardware” existente para que la solución sea de bajo coste. La operación de un phased array de banda ancha mediante desfasadores no es factible ya que el retardo temporal no puede aproximarse mediante un desfase. La solución adoptada e implementada consiste en sustituir los desfasadores por filtros digitales con retardo programable. El máximo alcance de un radar depende de la relación señal a ruido promedio en el receptor. La relación señal a ruido depende a su vez de la energía de señal transmitida, potencia multiplicado por la anchura de pulso. Cualquier cambio hardware que se realice conlleva un alto coste. La solución que se propone es utilizar una técnica de compresión de pulsos, consistente en introducir una modulación interna a la señal, desacoplando alcance y resolución. ABSTRACT This thesis is focused on the study and development of electronic warfare (EW) and radar algorithms for real-time implementation. The arrival of radar, radio and navigation systems to the military sphere led to the development of technologies to fight them. Therefore, the objective of EW systems is the control of the electromagnetic spectrum. Signals Intelligence (SIGINT) is one of the EW functions, whose mission is to detect, collect, analyze, classify and locate all kind of electromagnetic emissions. Electronic intelligence (ELINT) is the SIGINT subsystem that is devoted to radar signals. A real-time system is the one whose correctness depends not only on the provided result but also on the time in which this result is obtained. Radar and EW systems must provide information as fast as possible on a continuous basis and they can be defined as real-time systems. The introduction of real-time constraints implies a feedback process between the design of the algorithms and their hardware implementation. Moreover, a real-time constraint consists of two parameters: Latency and area of the implementation. All the algorithms in this thesis have been implemented on field programmable gate array (FPGAs) platforms, presenting a trade-off among performance, cost, power consumption and reconfigurability. The first part of the thesis is related to the study of different key subsystems of an ELINT equipment: Signal detection with channelized receivers, pulse parameter extraction, modulation classification for radar signals and passive location algorithms. The discrete Fourier transform (DFT) is a nearly optimal detector and frequency estimator for narrow-band signals buried in white noise. The introduction of fast algorithms to calculate the DFT, known as FFT, reduces the complexity and the processing time of the DFT computation. These properties have placed the FFT as one the most conventional methods for narrow-band signal detection for real-time applications. An algorithm for real-time spectral analysis for user-defined bandwidth, instantaneous dynamic range and resolution is presented. The most characteristic parameters of a pulsed signal are its time of arrival (TOA) and the pulse width (PW). The estimation of these basic parameters is a fundamental task in an ELINT equipment. A basic pulse parameter extractor (PPE) that is able to estimate all these parameters is designed and implemented. The PPE may be useful to perform a generic radar recognition process, perform an emitter location technique and can be used as the preprocessing part of an automatic modulation classifier (AMC). Modulation classification is a difficult task in a non-cooperative environment. An AMC consists of two parts: Signal preprocessing and the classification algorithm itself. Featurebased algorithms obtain different characteristics or features of the input signals. Once these features are extracted, the classification is carried out by processing these features. A feature based-AMC for pulsed radar signals with real-time requirements is studied, designed and implemented. Emitter passive location techniques can be divided into two classes: Triangulation systems, in which the emitter location is estimated with the intersection of the different lines of bearing created from the estimated directions of arrival, and quadratic position-fixing systems, in which the position is estimated through the intersection of iso-time difference of arrival (TDOA) or iso-frequency difference of arrival (FDOA) quadratic surfaces. Although TDOA and FDOA are only implemented with time of arrival and frequency differences, different algorithms for TDOA, FDOA and position estimation are studied and analyzed. The second part is dedicated to FIR filter design and implementation for two different radar applications: Wideband phased arrays with true-time delay (TTD) filters and the range improvement of an operative radar with no hardware changes to minimize costs. Wideband operation of phased arrays is unfeasible because time delays cannot be approximated by phase shifts. The presented solution is based on the substitution of the phase shifters by FIR discrete delay filters. The maximum range of a radar depends on the averaged signal to noise ratio (SNR) at the receiver. Among other factors, the SNR depends on the transmitted signal energy that is power times pulse width. Any possible hardware change implies high costs. The proposed solution lies in the use of a signal processing technique known as pulse compression, which consists of introducing an internal modulation within the pulse width, decoupling range and resolution.