904 resultados para wound irrigation
Resumo:
This work describes the design and assembly of multifunctional and cost-efficient composite fiber nonwovens as semi-occlusive wound dressings using a simple electrospinning process to incorporate a variety Of functional components into an Ultrathin fiber. These components include non-hydrophilic poly(L-lactide) (PLLA) as fibrous backbone, hydrophilic poly(vinyl pyrrolidone)iodine (PVP-I), TiO2 nanoparticles, zinc chloride as antimicrobial, odor-controlling, and antiphlogistic agents, respectively. The process of synthesis starts with a multicomponent solution Of PLLA, PVP, TiO2 nanoparticles plus zinc chloride, in which TiO2 nanoparticles are synthesized by in situ hydrolysis of TiO2 precursors in a PVP Solution for the sake of obtaining the particle-uniformly dispersive solution. Subsequent electrospinning generates the corresponding composite fibers. A further iodine vapor treatment to the composite fibers combines iodine with PVP to produce the PVP-I complexes. Experiments indicate that the assembled composite fibers (300-400 nm) possess the ointment-releasing characteristic and the phase-separate, core-sheath structures in which PVP-I residing in fiber Surface layer becomes the sheath, and PLLA distributing inside the fiber acts as the core.
Resumo:
Poly(vinyl alcohol) /poly(N-vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low-temperature treatment and subsequent Co-60 -gamma-ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low-temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low-temperature treatment and gamma-ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio. and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion-controlled kinetics.
Resumo:
A wound-type cell with a polyaniline (PAn) positive electrode, a LiClO4-propylene carbonate (PC) electrolyte, and a lithium foil negative electrode has been constructed. The two electrodes are separated by a polypropylene separator. The PAn is deposited on carbon felt from a HClO4 solution containing aniline by galvanostatic or potentiostatic electrolysis. Using cyclic voltammetry charge/discharge cycles and charge/retention tests, the following results have been obtained: (i) reversibility of the charge/discharge reaction of the PAn electrode is very good; (ii) more than 50 charge/discharge cycles at 80% charge/discharge efficiency and 260 W h kg-1 discharge energy density can be achieved at 50 mA between 2 and 4 V; (iii) the open-circuit voltage and the capacity retention of the battery after storage at open-circuit for 60 days are 3.4 V and 33%, respectively.
Resumo:
The variety of wound types has resulted in a wide range of wound dressings with new products frequently introduced to target different aspects of the wound healing process. The ideal dressing should achieve rapid healing at reasonable cost with minimal inconvenience to the patient. This article offers a review of the common wound management dressings and emerging technologies for achieving improved wound healing. It also reviews many of the dressings and novel polymers used for the delivery of drugs to acute, chronic and other types of wound. These include hydrocolloids, alginates, hydrogels, polyurethane, collagen, chitosan, pectin and hyaluronic acid. There is also a brief section on the use of biological polymers as tissue engineered scaffolds and skin grafts. Pharmacological agents such as antibiotics, vitamins, minerals, growth factors and other wound healing accelerators that take active part in the healing process are discussed. Direct delivery of these agents to the wound site is desirable, particularly when systemic delivery could cause organ damage due to toxicological concerns associated with the preferred agents. This review concerns the requirement for formulations with improved properties for effective and accurate delivery of the required therapeutic agents. General formulation approaches towards achieving optimum physical properties and controlled delivery characteristics for an active wound healing dosage form are also considered briefly.
Resumo:
The role of microorganisms in the development and maintenance of pulpal and periapical inflammation have been well documented. The success of root canal treatment largely depends on the elimination of microbial contamination from the root canal system. Although mechanical instrumentation of root canals can reduce bacterial population, effective elimination of bacteria cannot be achieved without the use of antimicrobial root canal irrigation and medication. This review will discuss the antimicrobial effects of the known root canal irrigants and medicaments and explore future developments in the field. © 2007 Mosby, Inc. All rights reserved.