873 resultados para wide-angle
Resumo:
It is known that some Virtual Reality (VR) head-mounted displays (HMDs) can cause temporary deficits in binocular vision. On the other hand, the precise mechanism by which visual stress occurs is unclear. This paper is concerned with a potential source of visual stress that has not been previously considered with regard to VR systems: inappropriate vertical gaze angle. As vertical gaze angle is raised or lowered the 'effort' required of the binocular system also changes. The extent to which changes in vertical gaze angle alter the demands placed upon the vergence eye movement system was explored. The results suggested that visual stress may depend, in part, on vertical gaze angle. The proximity of the display screens within an HMD means that a VR headset should be in the correct vertical location for any individual user. This factor may explain some previous empirical results and has important implications for headset design. Fortuitously, a reasonably simple solution exists.
Resumo:
Objective: The objectives were to determine the postural consequences of varying computer monitor height and to describe self-selected monitor heights and postures. Design: The design involved experimental manipulation of computer monitor height, description of self-selected heights, and measurement of posture and gaze angles. Background. Disagreement exists with regard to the appropriate height of computer monitors. It is known that users alter both head orientation and gaze angle in response to changes in monitor height; however the relative contribution of atlanto-occipital and cervical flexion to the change in head rotation is unknown. No information is available with regard to self-selected monitor heights. Methods. Twelve students performed a tracking task with the monitor placed at three different heights. The subjects then completed eight trials in which monitor height was first self-selected. Sagittal postural and gaze angle data were determined by digitizing markers defining a two-dimensional three-link model of the trunk, cervical spine and head. Results. The 27 degrees change in monitor height imposed was, on average, accommodated by 18 degrees of head inclination and a 9 degrees change in gaze angle relative to the head. The change in head inclination was achieved by a 6 degrees change in trunk inclination, a 4 degrees change in cervical flexion, and a 7 degrees change in atlanto-occipital flexion. The self-selected height varied depending on the initial monitor height and inclination. Conclusions. Self-selected monitor heights were lower than current 'eye-level' recommendations. Lower monitor heights are likely to reduce both visual and musculoskeletal discomfort. Relevance Musculoskeletal and visual discomfort may be reduced by placing computer monitors lower than currently recommended. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The concept of rainfall erosivity is extended to the estimation of catchment sediment yield and its variation over time. Five different formulations of rainfall erosivity indices, using annual, monthly and daily rainfall data, are proposed and tested on two catchments in the humid tropics of Australia. Rainfall erosivity indices, using simple power functions of annual and daily rainfall amounts, were found to be adequate in describing the interannual and seasonal variation of catchment sediment yield. The parameter values of these rainfall erosivity indices for catchment sediment yield are broadly similar to those for rainfall erosivity models in relation to the R-factor in the Universal Soil Loss Equation.
Resumo:
The removal of chemicals in solution by overland how from agricultural land has the potential to be a significant source of chemical loss where chemicals are applied to the soil surface, as in zero tillage and surface-mulched farming systems. Currently, we lack detailed understanding of the transfer mechanism between the soil solution and overland flow, particularly under field conditions. A model of solute transfer from soil solution to overland flow was developed. The model is based on the hypothesis that a solute is initially distributed uniformly throughout the soil pore space in a thin layer at the soil surface. A fundamental assumption of the model is that at the time runoff commences, any solute at the soil surface that could be transported into the soil with the infiltrating water will already have been convected away from the area of potential exchange. Solute remaining at the soil surface is therefore not subject to further infiltration and may be approximated as a layer of tracer on a plane impermeable surface. The model fitted experimental data very well in all but one trial. The model in its present form focuses on the exchange of solute between the soil solution and surface water after the commencement of runoff. Future model development requires the relationship between the mass transfer parameters of the model and the time to runoff: to be defined. This would enable the model to be used for extrapolation beyond the specific experimental results of this study. The close agreement between experimental results and model simulations shows that the simple transfer equation proposed in this study has promise for estimating solute loss to surface runoff. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The (2,3)J(CH) dependence on dihedral angle (theta H-C-C-X) for cyclopentane derivatives was investigated. We observed that the combined use of experimentally obtained (2,3)J(CH) values and the theoretically determined dihedral angles between the corresponding nuclei can be used to infer the relative stereochemistry of the ring substituents in cyclopentane derivatives. There is a good correlation between the magnitude of (3)J(CH) and the dihedral angle between the hydrogen and the coupled carbon (R-2 = 0.88). Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
In the current work, we studied the effect of the nonionic detergent dodecyloctaethyleneglycol, C(12)E(8), on the structure and oligomeric form of the Na,K-ATPase membrane enzyme (sodium-potassium pump) in aqueous suspension, by means of small-angle X-ray scattering (SAXS). Samples composed of 2 mg/mL of Na,K-ATPase, extracted from rabbit kidney medulla, in the presence of a small amount of C(12)E(8) (0.005 mg/mL) and in larger concentrations ranging from 2.7 to 27 mg/mL did not present catalytic activity. Under this condition, an oligomerization of the alpha subunits is expected. SAXS data were analyzed by means of a global fitting procedure supposing that the scattering is due to two independent contributions: one coming from the enzyme and the other one from C(12)E(8) micelles. In the small detergent content (0.005 mg/mL), the SAXS results evidenced that Na,K-ATPase is associated into aggregates larger than (alpha beta)(2) form. When 2.7 mg/mL of C(12)E(8) is added, the data analysis revealed the presence of alpha(4) aggregates in the solution and some free micelles. Increasing the detergent amount up to 27 mg/mL does not disturb the alpha(4) aggregate: just more micelles of the same size and shape are proportionally formed in solution. We believe that our results shed light on a better understanding of how nonionic detergents induce subunit dissociation and reassembling to minimize the exposure of hydrophobic residues to the aqueous solvent.
Resumo:
This paper describes the construction of Australia-wide soil property predictions from a compiled national soils point database. Those properties considered include pH, organic carbon, total phosphorus, total nitrogen, thickness. texture, and clay content. Many of these soil properties are used directly in environmental process modelling including global climate change models. Models are constructed at the 250-m resolution using decision trees. These relate the soil property to the environment through a suite of environmental predictors at the locations where measurements are observed. These models are then used to extend predictions to the continental extent by applying the rules derived to the exhaustively available environmental predictors. The methodology and performance is described in detail for pH and summarized for other properties. Environmental variables are found to be important predictors, even at the 250-m resolution at which they are available here as they can describe the broad changes in soil property.
Resumo:
Vertical direct chill (VDC) casting of aluminium alloys is a mature process that has evolved over many decades through gradual change to both equipment design and casting practice. Today, air-pressurised, continuous lubrication, hot top mould systems with advanced station automation are selected as the process of choice for producing extrusion billet. Specific sets of operating parameters are employed on these stations for each alloy and size combination to produce optimal billet quality. The designs and parameters are largely derived from past experience and accumulated know-how. Recent experimental work at the University of Queensland has concentrated on understanding the way in which the surface properties of liquid aluminium alloys, e.g., surface tension, wetting angle and oxide skin strength, influence the size and shape of the naturally-stab le meniscus for a given alloy, temperature and atmosphere. The wide range of alloy-and condition-dependent values measured has led to the consideration of how these properties impact the stability of the enforced molten metal meniscus within the hot top mould cavity. The actual shape and position of the enforced meniscus is controlled by parameters such as the upstream conduction distance (UCD) from sub-mould cooling and the molten metal head. The degree of deviation of this actual meniscus from the predicted stable meniscus is considered to be a key driver in surface defect formation. This paper reports on liquid alloy property results and proposes how this knowledge might be used to better design VDC mould systems and casting practices.
Resumo:
Context: Thyroglobulin (TG) is a large glycoprotein and functions as a matrix for thyroid hormone synthesis. TG gene mutations give rise to goitrous congenital hypothyroidism (CH) with considerable phenotype variation. Objectives: The aim of the study was to report the genetic screening of 15 patients with CH due to TG gene mutations and to perform functional analysis of the p. A2215D mutation. Design: Clinical evaluation and DNA sequencing of the TG gene were performed in all patients. TG expression was analyzed in the goitrous tissue of one patient. Human cells were transfected with expression vectors containing mutated and wild-type human TG cDNA. Results: All patients had an absent rise of serum TG after stimulation with recombinant human TSH. Sequence analysis revealed three previously described mutations (p. A2215D, p. R277X, and g. IVS30 + 1G > T), and two novel mutations (p. Q2142X and g. IVS46-1G > A). Two known (g. IVS30 + 1G/p. A2215D and p. A2215D/p. R277X) and one novel (p. R277X/g. IVS46-1G > A) compound heterozygous constellations were also identified. Functional analysis indicated deficiency in TG synthesis, reduction of TG secretion, and retention of the mutant TG within the cell, leading to an endoplasmic reticulum storage disease, whereas small amounts of mutant TG were still secreted within the cell system. Conclusion: All studied patients were either homozygous or heterozygous for TG gene mutations. Two novel mutations have been detected, and we show that TG mutation p. A2215D promotes the retention of TG within the endoplasmic reticulum and reduces TG synthesis and secretion, causing mild hypothyroidism. In the presence of sufficient iodine supply, some patients with TG mutations are able to compensate the impaired hormonogenesis and generate thyroid hormone. (J Clin Endocrinol Metab 94: 2938-2944, 2009)
Resumo:
Background Meta-analysis is increasingly being employed as a screening procedure in large-scale association studies to select promising variants for follow-up studies. However, standard methods for meta-analysis require the assumption of an underlying genetic model, which is typically unknown a priori. This drawback can introduce model misspecifications, causing power to be suboptimal, or the evaluation of multiple genetic models, which augments the number of false-positive associations, ultimately leading to waste of resources with fruitless replication studies. We used simulated meta-analyses of large genetic association studies to investigate naive strategies of genetic model specification to optimize screenings of genome-wide meta-analysis signals for further replication. Methods Different methods, meta-analytical models and strategies were compared in terms of power and type-I error. Simulations were carried out for a binary trait in a wide range of true genetic models, genome-wide thresholds, minor allele frequencies (MAFs), odds ratios and between-study heterogeneity (tau(2)). Results Among the investigated strategies, a simple Bonferroni-corrected approach that fits both multiplicative and recessive models was found to be optimal in most examined scenarios, reducing the likelihood of false discoveries and enhancing power in scenarios with small MAFs either in the presence or in absence of heterogeneity. Nonetheless, this strategy is sensitive to tau(2) whenever the susceptibility allele is common (MAF epsilon 30%), resulting in an increased number of false-positive associations compared with an analysis that considers only the multiplicative model. Conclusion Invoking a simple Bonferroni adjustment and testing for both multiplicative and recessive models is fast and an optimal strategy in large meta-analysis-based screenings. However, care must be taken when examined variants are common, where specification of a multiplicative model alone may be preferable.
Resumo:
Inhomogeneities in the spatial distribution of the excitatory Radio Frequency (RF) field, are still a dominant source of artifacts and loss of signal to noise ratio in MR imaging experiments, A number of strategies have been proposed to quantify this distribution, However, in this technical note we present a relatively simple MR imaging procedure which can be used to visualise RF inhomogeneities directly either by means of the magnitude or the phase of an image. To visualise the RF field distribution in both the inner and outer volumes of the coil, we have performed experiments in which the entire coil is submerged in a non-conducting fluid, To the best of our knowledge this strategy has not been used previously in order to evaluate coil performance, Finally, we demonstrate that the method is sensitive enough to reveal the effects of the sample properties on the effective RF wavelength of the transmitted field. (C) 1997 Elsevier Science Inc.
Resumo:
OBJECTIVE: This study was conducted to investigate the success rate of using the facial motor evoked potential (FMEP) of orbicularis oculi and oris muscles for facial nerve function monitoring with use of a stepwise protocol, and its usefulness in predicting facial nerve outcome during cerebellopontine angle (CPA) surgeries. METHODS: FMEPs were recorded intraoperatively from 60 patients undergoing CPA surgeries. Transcranial electrocortical stimulation (TES) was performed using corkscrew electrodes positioned at hemispheric montage (C3/C4 and CZ). The contralateral abductor pollicis brevis muscle was used as the control response. Stimulation was always applied contralaterally to the affected side using 1, 3, or 5 rectangular pulses ranging from 200 to 600 V with 50 mu s of pulse duration and an interstimulus interval of 2 ms. Facial potentials were recorded from needles placed in the orbicularis oculi and oris muscles. RESULTS: FMEP from the orbicularis oris and oculi muscles could be reliably monitored in 86.7% and 85% of the patients, respectively. The immediate postoperative facial function correlated significantly with the FMEP ratio in the orbicularis oculi muscle at 80% amplitude ratio (P =.037) and orbicularis oris muscle at 35% ratio (P =.000). FMEP loss was always related to postoperative facial paresis, although in different degrees. CONCLUSION: FMEPs can be obtained reliably by using TES with 3 to 5 train pulses. Stable intraoperative FMEPs can predict a good postoperative outcome of facial function. However, further refinements of this technique are necessary to minimize artifacts and to make this method more reliable.
Resumo:
OBJECTIVE: We report our results using Onyx HD-500 (Micro Therapeutics, Inc., Irvine, CA) in the endovascular treatment of wide-neck intracranial aneurysms, which have a high rate of incomplete occlusion and recanalization with platinum coils. METHODS: Sixty-nine patients with 84 aneurysms were treated. Most of the aneurysms were located in the anterior circulation (80 of 84 aneurysms), were unruptured (74 of 84 aneurysms), and were incidental. Ten presented with subarachnoid hemorrhage, and 15 were symptomatic. All aneurysms had wide necks (neck >4 mm and/or dome-to-neck ratio <1.5). Fifty aneurysms were small (<12 mm), 30 were large (12 to <25 mm) and 4 were giant. Angiographic follow-up was available for 65 of the 84 aneurysms at 6 months, for 31 of the 84 aneurysms at 18 months, and for 5 of the 84 aneurysms at 36 months. RESULTS: Complete aneurysm occlusion was seen in 65.5% of aneurysms on immediate control, in 84.6% at 6 months, and in 90.3% at 18 months. The rates of complete occlusion were 74%, 95.1%, and 95.2% for small aneurysms and 53.3%, 70%, and 80% for large aneurysms at the same follow-up periods. Progression from incomplete to complete occlusion was seen in 68.2% of all aneurysms, with a higher percentage in small aneurysms (90.9%). Aneurysm recanalization was observed in 3 patients (4.6%), with retreatment in 2 patients (3.3%). Procedural mortality was 2.9%. Overall morbidity was 7.2%. CONCLUSION: Onyx embolization of intracranial wide-neck aneurysms is safe and effective. Morbidity and mortality rates are similar to those of other current endovascular techniques. Larger samples and longer follow-up periods are necessary.