976 resultados para transitive calibration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dinoflagellate genus Alexandrium contains several toxin producing species and strains, which can cause major economic losses to the shell fish industry. It is therefore important to be able to detect these toxin producers and also distinguish toxic strains from some of the morphologically identical non-toxic strains. To facilitate this DNA probes to be used in a microarray format were designed in silico or developed from existing published probes. These probes targeted either the 18S or 28S ribosomal ribonucleic acid (rRNA) gene in Alexandrium tamarense Group I, Group III and Group IV, Alexandrium ostenfeldii and Alexandrium minutum. Three strains of A. tamarense Group I, A. tamarense Group III, A. minutum and two strains of A. ostenfeldii were grown at optimal conditions and transferred into new environmental conditions changing either the light intensity, salinity, temperature or nutrient concentrations, to check if any of these environmental conditions induced changes in the cellular ribonucleic acid (RNA) concentration or growth rate. The aim of this experiment was the calibration of several species-specific probes for the quantification of the toxic Alexandrium strains. Growth rates were highly variable but only elevated or lowered salinity significantly lowered growth rate for A. tamarense Group I and Group III; differences in RNA content were not significant for the majority of the treatments. Only light intensity seemed to affect significantly the RNA content in A. tamarense Group I and Group III, but this was still within the same range as for the other treatments meaning that a back calibration from RNA to cell numbers was possible. The designed probes allow the production of quantitative information for Alexandrium species for the microarray chip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful algal blooms (HAB) occur worldwide and cause health problems and economic damage to fisheries and tourism. Monitoring for toxic algae is therefore essential but is based primarily on light microscopy, which is time consuming and can be limited by insufficient morphological characters such that more time is needed to examine critical features with electron microscopy. Monitoring with molecular tools is done in only a few places world-wide. EU FP7 MIDTAL (Microarray Detection of Toxic Algae) used SSU and LSU rRNA genes as targets on microarrays to identify toxic species. In order to comply with current monitoring requirements to report cell numbers as the relevant threshold measurement to trigger closure of fisheries, it was necessary to calibrate our microarray to convert the hybridisation signal obtained to cell numbers. Calibration curves for two species of Pseudo-nitzschia for use with the MIDTAL microarray are presented to obtain cell numbers following hybridisation. It complements work presented by Barra et al. (2012b. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1330-1v) for two other Pseudo-nitzschia spp., Dittami and Edvardsen (2012a. J. Phycol. 48, 1050) for Pseudochatonella, Blanco et al. (2013. Harmful Algae 24, 80) for Heterosigma, McCoy et al. (2013. FEMS. doi: 10.1111/1574-6941.12277) for Prymnesium spp., Karlodinium veneficum, and cf. Chatonella spp. and Taylor et al. (2014. Harmful Algae, in press) for Alexandrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0–26 cal kyr BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0–10.5 cal kyr BP. Beyond 10.5 cal kyr BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific 14C reservoir age information to provide a single global marine mixed-layer calibration from 10.5–26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The definitive paper by Stuiver and Polach (1977) established the conventions for reporting of 14C data for chronological and geophysical studies based on the radioactive decay of 14C in the sample since the year of sample death or formation. Several ways of reporting 14C activity levels relative to a standard were also established, but no specific instructions were given for reporting nuclear weapons testing (post-bomb) 14C levels in samples. Because the use of post-bomb 14C is becoming more prevalent in forensics, biology, and geosciences, a convention needs to be adopted. We advocate the use of fraction modern with a new symbol F14C to prevent confusion with the previously used Fm, which may or may not have been fractionation corrected. We also discuss the calibration of post-bomb 14C samples and the available datasets and compilations, but do not give a recommendation for a particular dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have conducted a series of radiocarbon measurements on decadal samples of dendrochronologically dated wood from both hemispheres, spanning 1000 years (McCormac et al. 1998; Hogg et al. this issue). Using the data presented in Hogg et al., we show that during the period AD 950-1850 the 14C offset between the hemispheres is not constant, but varies periodically (~130 yr periodicity) with amplitudes varying between 1 and 10‰ (i.e. 8-80 yr), with a consequent effect on the 14C calibration of material from the Southern Hemisphere. A large increase in the offset occurs between AD 1245 and 1355. In this paper, we present a Southern Hemisphere high-precision calibration data set (SHCal02) that comprises measurements from New Zealand, Chile, and South Africa. This data, and a new value of 41 ± 14 yr for correction of the IntCal98 data for the period outside the range given here, is proposed for use in calibrating Southern Hemisphere 14C dates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiocarbon dating has been rarely used for chronological problems relating to the Anglo-Saxon period. The "flatness" of the calibration curve and the resultant wide range in calendrical dates provide little advantage over traditional archaeological dating in this period. Recent advances in Bayesian methodology have, however, created the possibility of refining and checking the established chronologies, based on typology of artifacts, against 14C dates. The calibration process, within such a confined age range, however, relies heavily on the structural accuracy of the calibration curve. We have therefore re-measured, at decadal intervals, a section of the Irish oak chronology for the period AD 495–725. These measurements have been included in IntCal04.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent measurements on dendrochronologically-dated wood from the Southern Hemisphere have shown that there are differences between the structural form of the radiocarbon calibration curves from each hemisphere. Thus, it is desirable, when possible, to use calibration data obtained from secure dendrochronologically-dated wood from the corresponding hemisphere. In this paper, we outline the recent work and point the reader to the internationally recommended data set that should be used for future calibration of Southern Hemisphere 14C dates.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Item Response Theory, IRT, is a valuable methodology for analyzing the quality of the instruments utilized in assessment of academic achievement. This article presents an implementation of the mentioned theory, particularly of the Rasch model, in order to calibrate items and the instrument used in the classification test for the Basic Mathematics subject at Universidad Jorge Tadeo Lozano. 509 responses chains of students, obtained in the june 2011 application, were analyzed with a set of 45 items, through eight case studies that are showing progressive steps of calibration. Criteria of validity of items and of whole instrument were defined and utilized, to select groups of responses chains and items that were finally used in the determination of parameters which then allowed the classification of assessed students by the test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the (super 14) C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton energy spectrum from photodissociation of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schrödinger equation is discretized and integrated. For few-cycle pulses one can resolve vibrational structure, arising from the experimental preparation of the molecular ion. We calculate the corresponding energy spectrum and analyse the dependence on the pulse time delay, pulse length and intensity of the laser for ? ~ 790 nm. We conclude that the proton spectrum is a sensitive probe of both the vibrational populations and phases, and allows us to distinguish between adiabatic and nonadiabatic dissociation. Furthermore, the sensitivity of the proton spectrum from H2+ is a practical means of calibrating the pulse. Our results are compared with recent measurements of the proton spectrum for 65 fs pulses using a Ti:Sapphire laser (? ~ 790 nm) including molecular orientation and focal-volume averaging. Integrating over the laser focal volume, for the intensity I ~ 3 × 1015 W cm-2, we find our results are in excellent agreement with these experiments.