957 resultados para thoracic pedicle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytomegalovirus (CMV) is a highly complex pathogen which, despite modern prophylactic regimens, continues to affect a high proportion of thoracic organ transplant recipients. The symptomatic manifestations of CMV infection are compounded by adverse indirect effects induced by the multiple immunomodulatory actions of CMV. These include a higher risk of acute rejection, cardiac allograft vasculopathy after heart transplantation, and potentially bronchiolitis obliterans syndrome in lung transplant recipients, with a greater propensity for opportunistic secondary infections. Prophylaxis for CMV using antiviral agents (typically oral valganciclovir or intravenous ganciclovir) is now almost universal, at least in high-risk transplants (D+/R-). Even with extended prophylactic regimens, however, challenges remain. The CMV events can still occur despite antiviral prophylaxis, including late-onset infection or recurrent disease, and patients with ganciclovir-resistant CMV infection or who are intolerant to antiviral therapy require alternative strategies. The CMV immunoglobulin (CMVIG) and antiviral agents have complementary modes of action. High-titer CMVIG preparations provide passive CMV-specific immunity but also exert complex immunomodulatory properties which augment the antiviral effect of antiviral agents and offer the potential to suppress the indirect effects of CMV infection. This supplement discusses the available data concerning the immunological and clinical effects of CMVIG after heart or lung transplantation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Offprint: American journal of anatomy. Vol. 1, no. 3 (May 26, 1902).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design. Cross-sectional study. Objective. To develop a technique to measure electromyographic (EMG) activity of deep and superficial paraspinal muscles at different thoracic levels and to investigate activity of these muscles during seated trunk rotation. Summary of Background Data. Few studies have compared activity of deep and superficial paraspinal muscles of the thorax during trunk rotation, and conflicting results have been presented. Conflicting data may result from recording techniques or variation in activity between thoracic regions. Methods. EMG recordings were made from deep (multifidus/ rotatores) and superficial ( longissimus) paraspinal muscles at T5, T8, and T11 using selective intramuscular electrodes. Ten subjects rotated the trunk to end of range in each direction. EMG amplitude was measured in neutral, at end of range, and during four epochs, which represented four quarters of the movement. Results. During trunk rotation in sitting, longissimus EMG either increased with ipsilateral rotation ( T5) or decreased with contralateral rotation ( T5, T8, T11). In contrast, multifidus EMG was more variable and was either active with rotation in both directions ( particularly T5) or with one movement direction. Conclusions. The deep and superficial muscles of the thorax are differentially active, and the patterns of activity differ between the regions of the thorax. Data from this study support the hypothesis that multifidus may have a role in control of segmental motion at T5. Variability in multifidus activity at T8 and T11 suggests that this muscle may also control coupling between rotation and lateral flexion.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organization. The development of new diagnostic tools that are practicable and economical to scrutinize the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals up to 54 Hz covering both ballistocardiography (below 20 Hz) and audible heart sounds (20 Hz upward), using a system based on curvature sensors formed from fiber optic long period gratings. This system can visualize the real-time three-dimensional (3-D) mechanical motion of the heart by using the data from the sensing array in conjunction with a bespoke 3-D shape reconstruction algorithm. Visualization is demonstrated by adhering three to four sensors on the outside of the thorax and in close proximity to the apex of the heart; the sensing scheme revealed a complex motion of the heart wall next to the apex region of the heart. The detection scheme is low-cost, portable, easily operated and has the potential for ambulatory applications.