978 resultados para thermal transport
Resumo:
This work examines analytically the forced convection in a channel partially filled with a porous material and subjected to constant wall heat flux. The Darcy–Brinkman–Forchheimer model is used to represent the fluid transport through the porous material. The local thermal non-equilibrium, two-equation model is further employed as the solid and fluid heat transport equations. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions, for the solid and fluid temperature fields, are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio and Darcy number as parameters. The results can be readily used to validate numerical simulations. They are, further, applicable to the analysis of enhanced heat transfer, using porous materials, in heat exchangers.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
In this thesis the low-temperature magnetism of the spin-ice systems Dy2Ti2O7 and Ho2Ti2O7 is investigated. In general, a clear experimental evidence for a sizable magnetic contribution kappa_{mag} to the low-temperature, zero-field heat transport of both spin-ice materials is observed. This kappa_{mag} can be attributed to the magnetic monopole excitations, which are highly mobile in zero field and are suppressed by a rather small external field resulting in a drop of kappa(H). Towards higher magnetic fields, significant field dependencies of the phononic heat conductivities kappa_{ph}(H) of Ho2Ti2O7 and Dy2Ti2O7 are found, which are, however, of opposite signs, as it is also found for the highly dilute reference materials (Ho0.5Y0.5)2Ti2O7 and (Dy0.5Y0.5)2Ti2O7. The dominant effect in the Ho-based materials is the scattering of phonons by spin flips which appears to be significantly stronger than in the Dy-based materials. Here, the thermal conductivity is suppressed due to enhanced lattice distortions observed in the magnetostriction. Furthermore, the thermal conductivity of Dy2Ti2O7 has been investigated concerning strong hysteresis effects and slow-relaxation processes towards equilibrium states in the low-temperature and low-field regime. The thermal conductivity in the hysteretic regions slowly relaxes towards larger values suggesting that there is an additional suppression of the heat transport by disorder in the non-equilibrium states. The equilibration can even be governed by the heat current for particular configurations. A special focus was put on the dilution series Dy2Ti2O7x. From specific heat measurements, it was found that the ultra-slow thermal equilibration in pure spin ice Dy2Ti2O7 is rapidly suppressed upon dilution with non-magnetic yttrium and vanishes completely for x>=0.2 down to the lowest accessible temperatures. In general, the low-temperature entropy of (Dy1-xYx)2Ti2O7, considerably decreases with increasing x, whereas its temperature-dependence drastically increases. Thus, it could be clarified that there is no experimental evidence for a finite zero-temperature entropy in (Dy1-xYx)2Ti2O7 above x>=0.2, in clear contrast to the finite residual entropy S_{P}(x) expected from a generalized Pauling approximation. A similar discrepancy is also present between S_{P}(x) and the low-temperature entropy obtained by Monte Carlo simulations, which reproduce the experimental data from 25 K down to 0.7 K, whereas the data at 0.4 K are overestimated. A straightforward description of the field-dependence kappa(H) of the dilution series with qualitative models justifies the extraction of kappa_{mag}. It was observed that kappa_{mag} systematically scales with the degree of dilution and its low-field decrease is related to the monopole excitation energy. The diffusion coefficient D_{mag} for the monopole excitations was calculated by means of c_{mag} and kappa_{mag}. It exhibits a broad maximum around 1.6 K and is suppressed for T<=0.5 K, indicating a non-degenerate ground state in the long-time limit, and in the high-temperature range for T>=4 K where spin-ice physics is eliminated. A mean-free path of 0.3 mum is obtained for Dy2Ti2O7 at about 1 K within the kinetic gas theory.
Resumo:
Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature-induced grain coarsening. Despite this large-scale trend, a considerable grain size scatter occurs on the outcrop-scale indicating local influence of second-order effects such as thermal perturbations, fluid flow and second-phase particles. Second-phase particles, whose sizes range from nano- to the micron-scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron-scale second-phase particles, or to samples containing a large number of nano-scale particles. The obtained data set suggests that the second phases induce a temperature-controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D 1⁄4 C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second-phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian-type distributions of the pure samples. In contrast, fluid-enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable d18O and d13C isotope ratios in fluid-affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid-induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1.To summarize, considerable grain size variations of up to one order of magnitude can locally result from second-order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.
Resumo:
Schottky-barrier devices were formed from electropolymerised films of poly (3-methylthiophene) (PMeT). Thermal annealing of a partially undoped film led to diodes with rectification ratios as high as 5900 at 1 V and 50,000 at 2.5 V and ideality factors slightly above 2. The temperature dependence of ac loss tangent and forward currents are identical suggesting that bulk effects dominate device behaviour event at very low forward voltages. Below 250 K forward currents are essentially independent of temperature. Preliminary TSC measurements show the presence of at least two trapping levels in the devices. © 1993.
Resumo:
Schottky-barrier devices were formed from electropolymerised films of poly (3-methylthiophene) (PMeT). Thermal annealing of a partially undoped film led to diodes with rectification ratios as high as 5900 at 1 V and 50,000 at 2.5 V and ideality factors slightly above 2. The temperature dependence of ac loss tangent and forward currents are identical suggesting that bulk effects dominate device behaviour event at very low forward voltages. Below 250 K forward currents are essentially independent of temperature. Preliminary TSC measurements show the presence of at least two trapping levels in the devices. © 1993.
Resumo:
Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.
Resumo:
The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.
Resumo:
The thermal stability and thermal decomposition pathways for synthetic iowaite have been determined using thermogravimetry in conjunction with evolved gas mass spectrometry. Chemical analysis showed the formula of the synthesised iowaite to be Mg6.27Fe1.73(Cl)1.07(OH)16(CO3)0.336.1H2O and X-ray diffraction confirms the layered structure. Dehydration of the iowaite occurred at 35 and 79°C. Dehydroxylation occurred at 254 and 291°C. Both steps were associated with the loss of CO2. Hydrogen chloride gas was evolved in two steps at 368 and 434°C. The products of the thermal decomposition were MgO and a spinel MgFe2O4. Experimentally it was found to be difficult to eliminate CO2 from inclusion in the interlayer during the synthesis of the iowaite compound and in this way the synthesised iowaite resembled the natural mineral.
Resumo:
Synthetic Fe—Mn alkoxide of glycerol samples are submitted to controlled heating conditions and examined by IR absorption spectroscopy. On the other hand, the same sample is studied by infrared emission spectroscopy (IRES), upon heating in situ from 100 to 600°C. The spectral techniques employed in this contribution, especially IRES, show that as a result of the thermal treatments ferromagnetic oxides (manganese ferrite) are formed between 350 and 400°C. Some further spectral changes are seen at higher temperatures.