855 resultados para text mining clusterizzazione clustering auto-organizzazione conoscenza MoK
Resumo:
Tema 2. Un nuevo enfoque: la literatura desde lejos.
Resumo:
Tema 6. Text Mining con Topic Modeling.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In this paper we explore the use of text-mining methods for the identification of the author of a text. We apply the support vector machine (SVM) to this problem, as it is able to cope with half a million of inputs it requires no feature selection and can process the frequency vector of all words of a text. We performed a number of experiments with texts from a German newspaper. With nearly perfect reliability the SVM was able to reject other authors and detected the target author in 60–80% of the cases. In a second experiment, we ignored nouns, verbs and adjectives and replaced them by grammatical tags and bigrams. This resulted in slightly reduced performance. Author detection with SVMs on full word forms was remarkably robust even if the author wrote about different topics.
USO DE TEORIAS NO CAMPO DE SISTEMAS DE INFORMAÇÃO: MAPEAMENTO USANDO TÉCNICAS DE MINERAÇÃO DE TEXTOS
Resumo:
Esta dissertação visa apresentar o mapeamento do uso das teorias de sistemas de informações, usando técnicas de recuperação de informação e metodologias de mineração de dados e textos. As teorias abordadas foram Economia de Custos de Transações (Transactions Costs Economics TCE), Visão Baseada em Recursos da Firma (Resource-Based View-RBV) e Teoria Institucional (Institutional Theory-IT), sendo escolhidas por serem teorias de grande relevância para estudos de alocação de investimentos e implementação em sistemas de informação, tendo como base de dados o conteúdo textual (em inglês) do resumo e da revisão teórica dos artigos dos periódicos Information System Research (ISR), Management Information Systems Quarterly (MISQ) e Journal of Management Information Systems (JMIS) no período de 2000 a 2008. Os resultados advindos da técnica de mineração textual aliada à mineração de dados foram comparadas com a ferramenta de busca avançada EBSCO e demonstraram uma eficiência maior na identificação de conteúdo. Os artigos fundamentados nas três teorias representaram 10% do total de artigos dos três períodicos e o período mais profícuo de publicação foi o de 2001 e 2007.(AU)
Resumo:
A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient ability to capture the hierarchical structure. When applied in extracting protein-protein interactions, we found that it performed better than other established statistical methods and achieved 61.5% in F-score with balanced recall and precision values. Moreover, the statistical nature of the pure data-driven HVS model makes it intrinsically robust and it can be easily adapted to other domains.
Resumo:
During the last decade, biomedicine has witnessed a tremendous development. Large amounts of experimental and computational biomedical data have been generated along with new discoveries, which are accompanied by an exponential increase in the number of biomedical publications describing these discoveries. In the meantime, there has been a great interest with scientific communities in text mining tools to find knowledge such as protein-protein interactions, which is most relevant and useful for specific analysis tasks. This paper provides a outline of the various information extraction methods in biomedical domain, especially for discovery of protein-protein interactions. It surveys methodologies involved in plain texts analyzing and processing, categorizes current work in biomedical information extraction, and provides examples of these methods. Challenges in the field are also presented and possible solutions are discussed.
Resumo:
Discovering who works with whom, on which projects and with which customers is a key task in knowledge management. Although most organizations keep models of organizational structures, these models do not necessarily accurately reflect the reality on the ground. In this paper we present a text mining method called CORDER which first recognizes named entities (NEs) of various types from Web pages, and then discovers relations from a target NE to other NEs which co-occur with it. We evaluated the method on our departmental Website. We used the CORDER method to first find related NEs of four types (organizations, people, projects, and research areas) from Web pages on the Website and then rank them according to their co-occurrence with each of the people in our department. 20 representative people were selected and each of them was presented with ranked lists of each type of NE. Each person specified whether these NEs were related to him/her and changed or confirmed their rankings. Our results indicate that the method can find the NEs with which these people are closely related and provide accurate rankings.
Resumo:
Timeline generation is an important research task which can help users to have a quick understanding of the overall evolution of any given topic. It thus attracts much attention from research communities in recent years. Nevertheless, existing work on timeline generation often ignores an important factor, the attention attracted to topics of interest (hereafter termed "social attention"). Without taking into consideration social attention, the generated timelines may not reflect users' collective interests. In this paper, we study how to incorporate social attention in the generation of timeline summaries. In particular, for a given topic, we capture social attention by learning users' collective interests in the form of word distributions from Twitter, which are subsequently incorporated into a unified framework for timeline summary generation. We construct four evaluation sets over six diverse topics. We demonstrate that our proposed approach is able to generate both informative and interesting timelines. Our work sheds light on the feasibility of incorporating social attention into traditional text mining tasks. Copyright © 2013 ACM.
Resumo:
The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included.
Resumo:
Learning user interests from online social networks helps to better understand user behaviors and provides useful guidance to design user-centric applications. Apart from analyzing users' online content, it is also important to consider users' social connections in the social Web. Graph regularization methods have been widely used in various text mining tasks, which can leverage the graph structure information extracted from data. Previously, graph regularization methods operate under the cluster assumption that nearby nodes are more similar and nodes on the same structure (typically referred to as a cluster or a manifold) are likely to be similar. We argue that learning user interests from complex, sparse, and dynamic social networks should be based on the link structure assumption under which node similarities are evaluated based on the local link structures instead of explicit links between two nodes. We propose a regularization framework based on the relation bipartite graph, which can be constructed from any type of relations. Using Twitter as our case study, we evaluate our proposed framework from social networks built from retweet relations. Both quantitative and qualitative experiments show that our proposed method outperforms a few competitive baselines in learning user interests over a set of predefined topics. It also gives superior results compared to the baselines on retweet prediction and topical authority identification. © 2014 ACM.
Resumo:
The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included. © 2010 The authors.
Resumo:
This paper describes the followed methodology to automatically generate titles for a corpus of questions that belong to sociological opinion polls. Titles for questions have a twofold function: (1) they are the input of user searches and (2) they inform about the whole contents of the question and possible answer options. Thus, generation of titles can be considered as a case of automatic summarization. However, the fact that summarization had to be performed over very short texts together with the aforementioned quality conditions imposed on new generated titles led the authors to follow knowledge-rich and domain-dependent strategies for summarization, disregarding the more frequent extractive techniques for summarization.
Resumo:
In a highly connected society, avid for information and technological innovations, constantly changing the consumption patterns, the brand management strategy occupies a growing place. Allied with the increased competition among companies, the brand that can differentiate in consumers’ minds becomes strong. This aspect is even more important in the service industry, where the consumer experience, the definition and support of the brand’s values are vital to the continued strength of both your identity and image. These aspects are seen as a process of communication in which the way the image is developed in the minds of consumers comes from how identity is constructed and transmitted to them (DE CHERNATONY; DRURY; SEGAL-HORN, 2004). Considering the dynamic and complex scenario, this study aims to identify and analyze the possible convergences or divergences between the identity built by the organization and the brand image perceived by consumers of a telecommunications services company. To achieve this objective, the model proposed by De Chernatony, Drury and Segal-Horn (2004) was used as a theoretical basis, which addresses the transformation of identity in brand image, specifically under the perspective of Pontes (2009). For him, customers are more motivated to buy and consume products that they believe that take a complementary image that they have of themselves, and proposes the existence of multiple selves: the perceived, which refers to the employees and the organization’s management opinions on the brand; the ideal, which deals with effective brand identity thought by its leaders, the vision of what it should be; social, which shows how managers think that consumers see it; the apparent, formed by the image of the brand by customers; and finally the real self, that would be an integrated composite of all of these visions. In this regard, a case study was made in a telecommunications company with regional actions, from a qualitative and quantitative approach. It was identified the company’s vision through semi-structured interviews with marketing managers and analysis of documents related to the brand strategy. The point of view of consumers was addressed for text mining techniques applied to internal unstructured data coming from the collection of posts made on Facebook and Twitter, related to the brand, and customer interaction with the company through these social networks. The results showed the importance of the concepts of identity and brand image, and how they are interrelated. Moreover, the qualitative analysis it was shown that the vision of marketing executives is quite close and in line with the Brand Book, showing that there is a cohesive and well disseminated speech internally in the organization. On the other hand, when evaluating the customer's point of view there was no specific comments on the brand, and it was not possible to identify the evaluation of Algar Telecom image by consumers. Nevertheless, other relevant aspects could be identified for the consolidation of the brand identity, as the occurrence of a number of complaints, especially regarding the internet as well as the concern of customers for the quality of the provision of services.
Resumo:
Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.
Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.
Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.
Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.