900 resultados para surface nanostructures, self-assembly, thermal tweezers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemically functionalized adamantane molecules have been investigated by first principles total energy calculations. Boron and nitrogen functionalized molecules were found to be very stable, consistent with available experimental data. Two hypothetical molecular crystals, involving functionalized adamantane, were investigated. These molecular crystals presented direct electronic bandgaps and large bulk moduli, which suggested a possible road for molecular self-assembly using functionalized diamondoids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No Abstract

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der hier vorliegenden Dissertation wird die Entwicklung und Charakterisierung einer biomimetischen Beschichtung für Titanimplantatoberflächen, insbesondere Dentalimplantate, beschrieben. Ziel war es, die Adhäsion und Aktivität von Osteoblasten auf Titanoberflächen zu steigern und so eine Beschleunigung der Implantatintegration in das Knochengewebe zu erreichen. Hierfür wurde eine spezielle Art der biomimetischen Beschichtung entwickelt, bei der biotinyliertes Fibronektin (bFn) über Streptavidin auf eine biotinylierte TiOX-Modelloberfläche immobilisiert wurde. Die Biotinmodifizierung der TiOX-Oberfläche erfolgte hierbei über einen „Self-Assembly-Prozess“ durch sequenzielle Chemiesorption von N-(6-aminohexyl)aminopropyltrimethoxysilan sowie verschiedenen Sulfo-NHS-Biotin-Derivaten, welche den Aufbau einer Streptavidin-Monolage ermöglichten. Als ein wichtiges Resultat zeigte sich, dass die Streptavidin-Monolage effektiv die unspezifische Adsorption von Proteinen an die TiOX-Oberfläche unterbindet und hierdurch die Adhäsion von Osteoblasten auf dieser unterdrückt. Dies hat den Vorteil, dass auf eine antiadhäsive Basisbeschichtung, welche für eine spezifische Zellreaktion wichtig ist, verzichtet werden kann. Dieses osteoblastere Adhäsionsverhalten änderte sich signifikant nach Anbindung von bFn an die Streptavidin-Monolage, mit dem Ergebnis, einer drastischen Steigerung der Osteoblastenadhäsion. Weiterhin besaßen Osteoblasten auf diesen Oberflächen ein Proteinexpressionsmuster, das auf eine erhöhte Osteoinduktion schließen lässt. Es zeigte sich darüber hinaus eine verstärkte Zelladhäsion sowie eine Steigerung des osteoinduktiven Effekts auf Substraten, bei denen bFn über eine Streptavidin-Monolage immobilisiert wurde, gegenüber mit nativem Fibronektin (Fn) modifizierten TiOX-Oberflächen. Ein wesentlicher Schwerpunkt bestand daher in der Analyse der Zusammensetzung und Struktur der biomimetischen Beschichtung über „Surface Plasmon Spectroscopy“ und „Atomic Force Microscopy“. Diese ergab, dass bFn und natives Fn auf den jeweiligen Oberflächen eine unterschiedliche Konformation einnimmt. Im Gegensatz zu nativem Fn, das bei der Adsorption unter physiologischen Bedingungen auf TiOX-Oberflächen eine kompakte Konformation besitzt, nimmt bFn auf einer Streptavidin-Monolage eine entfaltete Konformation ein. Bei letzterer handelt es sich um dieselbe, welche Fn in vivo innerhalb der extrazellulären Matrix besitzt. Sie unterscheidet sich von der kompakten Fn-Konformation dahingehend, dass entlang der Fn-Achse weitere Proteinbindestellen zugänglich werden und hierdurch die Zellaffinität von Fn gesteigert wird. Die nachgewiesene Konformationsänderung kann somit als Grund für die gesteigerte Osteoblasten-Adhäsion und Aktivität auf Oberflächen mit bFn angenommen werden. Diese Kenntnisse konnten weiterhin für die Optimierung des biomimetischen Schichtsystems genutzt werden. So war es möglich, durch alternierendes Inkubieren der Biotin-aktivierten Oberfläche mit Streptavidin und bFn, ein Multilayersystem gezielt aufzubauen. Der Vorteil dieses Multilayersystems gegenüber einer einfachen Monolage aus bFn besteht in einer erhöhten Stabilität der biomimetischen Beschichtung, wodurch eine Anwendung in der Praxis erleichtert würde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Für die Realisierung zukünftiger Technologien, wie z.B. molekulare Elektronik, werden Strategien benötigt, um funktionale Strukturen direkt auf Oberflächen zu erzeugen. Für die Bewältigung dieser Aufgabe ist die molekulare Selbstanordnung ein äußerst vielversprechender Bottom-up-Ansatz. Hierbei ist eine der größten Herausforderungen das Zusammenspiel aus intramolekularer Wechselwirkung und der Wechselwirkung zwischen Substrat und Molekülen in ein Gleichgewicht zu bringen. Da jedoch die wirkenden Kräfte der molekularen Selbstanordnung ausschließlich reversibler Natur sind, ist eine langfristige Stabilität fragwürdig. Somit ist die kovalente Verknüpfung der gebildeten Strukturen durch Reaktionen direkt auf der Oberfläche unerlässlich, um die Stabilität der Strukturen weiter zu erhöhen. Hierzu stellt die vorliegende Arbeit eine ausführliche Studie zu molekularer Selbstanordnung und der zielgerichteten Modifikation ebensolcher Strukturen dar. Durch den Einsatz von hochauflösender Rasterkraftmikroskopie im Ultrahochvakuum, welche es erlaubt einzelne Moleküle auf Nichtleitern abzubilden, wurde der maßgebliche Einfluss von Ankerfunktionalitäten auf den Prozess der molekularen Selbstanordnung gezeigt. Des Weiteren konnte die Stabilität der selbst angeordneten Strukturen durch neue Oberflächenreaktionskonzepte entschieden verbessert werden. Der Einfluss von Ankerfunktionen, die elektrostatische Wechselwirkung zwischen Molekül und Substrat vermitteln, auf den Strukturbildungsprozess der molekularen Selbstanordnung wird eingehend durch den Vergleich eines aromatischen Moleküls und seines vierfach chlorierten Derivates gezeigt. Für diese beiden Moleküle wurde ein deutlich unterschiedliches Verhalten der Selbstanordnung beobachtet. Es wird gezeigt, dass die Fähigkeit zur Bildung selbst angeordneter, stabiler Inseln entscheidend durch die Substituenten und die Abmessungen des Moleküls beeinflusst wird. Auch wird in dieser Arbeit die erste photochemische Reaktion organischer Moleküle auf einem Isolator gezeigt. Qualitative und quantitative Ergebnisse liefern ein detailliertes Bild darüber, wie die Abmessungen des Substratgitters die Richtung der Reaktion gezielt beeinflussen. Des Weiteren wird ein allgemeines Konzept zur selektiven Stabilisierung selbstangeordneter Molekülstrukturen durch den kontrollierten Transfer von Elektronen präsentiert. Durch die gezielte Steuerung der Menge an Dotierungsatomen wird die Desorptionstemperatur der molekularen Inseln signifikant erhöht und das Desorptionsverhalten der Inseln entschieden verändert. Diese Arbeit präsentiert somit erfolgreich durchgeführte Strategien um den Prozess der molekularen Selbstanordnung zu steuern, sowie entscheidende Mechanismen um die Stabilisierung und Modifizierung von selbst angeordneten Strukturen zu gewährleisten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates dendritic peptides capable of assembling into nanostructured gels, and explores the effect on self-assembly of mixing different molecular building blocks. Thermal measurements, small angle Xray scattering (SAXS) and circular dichroism (CD) spectroscopy are used to probe these materials on macroscopic, nanoscopic and molecular length scales. The results from these investigations demonstrate that in this case, systems with different "size" and "chirality" factors can self-organise, whilst systems with different "shape" factors cannot. The "size" and "chirality" factors are directly connected with the molecular information programmed into the dendritic peptides, whilst the shape factor depends on the group linking these peptides together-this is consistent with molecular recognition hydrogen bond pathways between the peptidic building blocks controlling the ability of these systems to self-recognise. These results demonstrate that mixtures of relatively complex peptides, with only subtle differences on the molecular scale, can self-organise into nanoscale structures, an important step in the spontaneous assembly of ordered systems from complex mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enzymatic cleavage of a peptide amphiphile (PA) is investigated. The self-assembly of the cleaved products is distinct from that of the PA substrate. The PA C16-KKFFVLK is cleaved by α-chymotrypsin at two sites leading to products C16-KKF with FVLK and C16-KKFF with VLK. The PA C16-KKFFVLK forms nanotubes and helical ribbons at room temperature. Both PAs C16-KKF and C16-KKFF corresponding to cleavage products instead self-assemble into 5-6 nm diameter spherical micelles, while peptides FVLK and VLK do not adopt well-defined aggregate structures. The secondary structures of the PAs and peptides are examined by FTIR and circular dichroism spectroscopy and X-ray diffraction. Only C16-KKFFVLK shows substantial β-sheet secondary structure, consistent with its self-assembly into extended aggregates, based on PA layers containing hydrogen-bonded peptide headgroups. This PA also exhibits a thermoreversible transition to twisted tapes on heating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nanostructured thin film is a thin material layer, usually supported by a (solid) substrate, which possesses subdomains with characteristic nanoscale dimensions (10 ~ 100 nm) that are differentiated by their material properties. Such films have captured vast research interest because the dimensions and the morphology of the nanostructure introduce new possibilities to manipulating chemical and physical properties not found in bulk materials. Block copolymer (BCP) self-assembly, and anodization to form nanoporous anodic aluminium oxide (AAO), are two different methods for generating nanostructures by self-organization. Using poly(styrene-block-methyl methacrylate) (PS-b-PMMA) nanopatterned thin films, it is demonstrated that these polymer nanopatterns can be used to study the influence of nanoscale features on protein-surface interactions. Moreover, a method for the directed assembly of adsorbed protein nanoarrays, based on the nanoscale juxtaposition of the BCP surface domains, is also demonstrated. Studies on protein-nanopattern interactions may inform the design of biomaterials, biosensors, and relevant cell-surface experiments that make use of nanoscale structures. In addition, PS-b-PMMA and AAO thin films are also demonstrated for use as optical waveguides at visible wavelengths. Due to the sub-wavelength nature of the nanostructures, scattering losses are minimized, and the optical response is amenable to analysis with effective medium theory (EMT). Optical waveguide measurements and EMT analysis of the films’ optical anisotropy enabled the in situ characterization of the PS-b-PMMA nanostructure, and a variety of surface processes within the nanoporous AAO involving (bio)macromolecules at high sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the versatile synthesis and self-organization of C3-symmetric discotic nanographene molecules as well as their potential applications as materials in molecular electronics. The details can be described as follows: 1) A novel synthetic strategy towards properly designed C3 symmetric 1,3,5-tris-2’arylbenzene precursors has been developed. After the final planarization by treatment with FeCl3 under mild conditions, for the first time, it became possible to access a variety of new C3-symmetric hexa-peri-hexabenzocoronenes (HBCs) and a series of triangle-shaped nanographenes. D3 symmetric HBC with three alkyl substituents and C2 symmetric HBC with two alkyl substituents were synthesized and found to show the surprising decrease of isotropic points., the self-assembly at the liquid-solid interface displayed a unique zigzag and flower patterns. 2) Triangle-shaped discotics revealed a unique self-assembly behavior in solution, solid state as well as at the solution-substrate interface. A mesophase stability over the broad temperature range with helical supramoelcular arrangement were observed in the bulk state. The honeycomb pattern as the result of novel self-assembly was presented. Triangle-shaped discotics with swallow alkyl tails were fabricated into photovoltaic devices, the supramolecular arrangement upon thermal treatment was found to play a key role in the improvement of solar efficiency. 3) A novel class of C3 symmetric HBCs with alternating polar/apolar substituents was synthesized. Their peculiar self-assembly in solution, in the bulk and on the surface were investigated by NMR techniques, X-ray diffraction as well as different electron microscope techniques. 4) A novel concept for manipulating the intracolumnar stacking of discotics and thus for controlling the helical pitch was presented. A unique staggered stacking in the column was achieved for the first time. Theoretical simulations confirmed this self-organization and predicted that this packing should show the highest charge carrier mobility for all discotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled molecular structures were investigated on insulating substrate surfaces using non-contact atomic force microscopy. Both, substrate preparation and molecule deposition, took place under ultra-high vacuum conditions. First, C60 molecules were investigated on the TiO2 (110) surface. This surface exhibits parallel running troughs at the nanometer scale, which strongly steer the assembly of the molecules. This is in contrast to the second investigated surface. The CaF2 (111) surface is atomically flat and the molecular assemblyrnwas observed to be far less affected by the surface. Basically different island structures were observed to what is typically know. Based on extensive experimental studies and theoretical considerations, a comprehensive picture of the processes responsible for the island formation of C60 molecules on this insulating surfaces was developed. The key process for the emergence of the observed novel island structures was made out to be the dewetting of molecules from the substrate. This new knowledge allows to further understand andrnexploit self-assembly techniques in structure fabrication on insulating substrate surfaces. To alter island formation and island structure, C60 molecules were codeposited with second molecule species (PTCDI and SubPc) on the CaF2 (111) surface. Depending on the order of deposition, quiet different structures were observed to arise. Thus, these are the first steps towards more complex functional arrangements consisting of two molecule species on insulating surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA is a fascinating biomolecule that is well known for its genetic role in living systems. The emerging area of DNA nanotechnology provides an alternative view that exploits unparallel self-assembly ability of DNA molecules for material use of DNA. Although many reports exist on the results of DNA self-assembling systems, still few of them focus on the in vitro study about the function of such DNA nanostructures in live cells. Due to this, there are still a limited research about the in vitro functionality of such designs. To address an aspect of this issue, we have designed, synthesized and characterized two multifunctional fluorescencent nanobiosensors by DNA self-assembling. Each structure was designed and implemented to be introduced in live cells in order to give information on their functioning in real-time. Computational tools were used in order to design a graphic model of two new DNA motifs and also to obtain the specific sequences to all the ssDNA molecules. By thermal self-assembly techniques we have successfully synthesized the structure and corroborate their formation by the PAGE technique. In addition, we have established the conditions to characterize their structural conformation change when they perform their sensor response. The sensing behavior was also accomplished by fluorescence spectroscopy techniques; FRET evaluation and fluorescence microscopy imaging. Providing the evidence about their adequate sensing performance outside and inside the cells detected in real-time. In a preliminary evaluation we have tried to show the in vitro functionality of our structures in different cancer cell lines with the ability to perform local sensing responses. Our findings suggest that DNA sensor nanostructures could serve as a platform to exploit further therapeutic achievements in live cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Arbeit beschreibt zum ersten Mal die kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche, motiviert im Hinblick auf die Nutzung der Synthesemethode für die molekulare Elektronik und verwandte Anwendungen. Durch die Verwendung der Nichtkontakt-Rasterkraftmikroskopie und der Kelvinprobe-Mikroskopie bei Raumtemperatur wurden grundlegende molekulare Prozesse der Wechselwirkungen zwischen Molekülen und der Calcit(10.4) Oberfläche sowie die chemische Reaktivität der Moleküle auf der Oberfläche analysiert. Das Zusammenspiel zwischen intermolekularen und Molekül-Oberfläche Wechselwirkungen zeigt sich für Biphenyl-4,4'-dicarbonsäure (BPDCA) durch die Koexistenz zweier unterschiedlicher molekularer Strukturen, die einen Einblick in die treibenden Kräfte der molekularen Selbstorganisation bieten. Die sehr ausgeprägte Reihenstruktur basiert auf der optimalen geometrischen Struktur der BPDCA Moleküle zu den Abmessungen des Substrats, während die zweite Struktur durch Wasserstoffbrücken zwischen den Molekülen gekennzeichnet ist. Der Deprotonierungsvorgang von 2,5-Dihydroxybenzoesäure (DHBA)-Molekülen auf Calcit wird bei Zimmertemperatur gezeigt. Zwei Phasen werden beobachtet, die nach Aufbringen der Moleküle koexistieren. Mit der Zeit geht eine bulk-ähnliche Phase in eine stabile, dicht gepackte Phase über. Der Übergang wird durch Betrachtung des Protonierungszustands der Moleküle erklärt. Die bulk-ähnliche Phase benötigt Wasserstoffbrückbindungen zur Strukturbildung. Werden die Moleküle deprotoniert, so wird die resultierende dicht gepackte Phase durch die elektrostatische Wechselwirkung der deprotonierten Carboxylatgruppen mit den Oberflächen-Calciumkationen stabilisiert. 4-Iodbenzoesäure (IBA)-Moleküle bilden auf Calcit nur Inseln an Stufenkanten, was auf die schwache Molekül-Oberflächen-Wechselwirkung zurückzuführen ist. Für einen stärkeren Einfluss des Substrats durchlaufen die Moleküle einen kontrollierten Übergangsschritt vom protonierten zum deprotonierten Zustand. Im deprotonierten Zustand nehmen die Moleküle eine wohldefinierte Adsorptionsposition auf dem Substrat ein. Die deprotonierte Säuregruppe wird ausgenutzt, um die Desorption der halogensubstituierten Benzoesäure-Moleküle bei der thermischer Aktivierung für die Vernetzungsreaktion zu vermeiden. Darüber hinaus wird die Carboxylatgruppe als starker Elektronendonor verwendet um die Phenyl-Halogen-Bindung zu schwächen und somit die homolytische Spaltung dieser Bindung auch bei moderaten Temperaturen zu ermöglichen. Diesem Konzept folgend ist die erste erfolgreiche kovalente Verknüpfung von 2,5-Diiod-benzoesäure, 2,5-Dichlorbenzoesäure, 3,5-Diiod Salicylsäure und 4-Iod-benzoesäure zu durchkonjugierten molekularen Drähten, Zick-Zack-Strukturen sowie Dimere gezeigt durch Ausnutzen von unterschiedlichen Substitutionsposition sowie Ändern der Anzahl der substituierten Halogenatome. Aufbauend auf diesem Erfolg, wird eine zweistufige Vernetzungsreaktion vorgestellt. Zum Induzieren der ortsspezifischen und sequentiellen kovalenten Verknüpfung wird ein Ausgangsmolekül gewählt, das sowohl eine Bromphenyl als auch eine Chlorphenyl Gruppe mit unterschiedlichen Dissoziationsenergien für die homolytische Spaltung besitzt. Die Reaktionsstellen und sequentielle Reihenfolge für die Reaktion sind somit in der molekularen Struktur einkodiert und bisher unerreichte Reaktionspfade können mithilfe der kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche beschritten werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. 2D polymers are attractive objects for the field of material sciences due to their exceptional properties. [1] As shown before, amphiphilic oligopyrenotides (produced via automated solid-phase synthesis) form rod–like supramolecular polymers in water. [2] These assemblies form 1D objects. [3] By applying certain changes to the design of the oligopyrenotide units the dimensionality of the formed assemblies can be influenced. Herein, we demonstrate that Py3 (see Figure 1) forms defined supramolecular assemblies under thermodynamic conditions in water. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM). The obtained results suggest that oligopyrenotides with the present type of geometry and linker length leads to formation of 2D supramolecular assemblies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum tri-sec-butoxide (ATSB), synthesis reproducibility, role of nonvolatile acids, and the crystallization and thermal stability of the crystalline counterparts. Mesophase specific surface area and pore uniformity depend notably on the solvent; s-BuOH yields the highest surface area and pore uniformity. The optimal mesophase synthesis is reproducible with standard deviations in the textural parameters below 5%. The most pore-uniform mesophases from the three solvents were thermally activated at 1023 K to crystallize them into γ-alumina. The s-BuOH mesophase is remarkably thermally stable, retaining the mesoscopic wormhole order with 300 m2/g (0.45 cm3/g) and an increased acidic site density. These features are not obtained with EtOH or t-BuOH, where agglomerated γ-Al2O3 crystallites are formed with lower surface areas and broader pore size distributions. This was rationalized by the increase of the hydrolysis rate using EtOH and t-BuOH. t-BuOH dehydrates under the synthesis conditions or reacts with HCl, situations that increase the water concentration and rate of hydrolysis. It was found that EtOH exchanges rapidly, producing a highly reactive Al-ethoxide, thus enhancing the hydrolysis rate as well. Particle heterogeneity with random packing of fibrous and wormhole morphologies, attributed to the high hydrolysis rate, was observed for mesophases derived from both solvents. Such a low particle coordination favors coarsening with enlargement of the pore size distribution upon thermal treatment, explaining the lower thermal stability. Controlled hydrolysis and formation of low-polymerized Al species in s-BuOH are possibly responsible for the adequate assembly onto the surfactant. This was verified by the formation of a regular distribution of relatively size-uniform nanoparticles in the mesophase; high particle coordination prevents coarsening, favors densification, and maintains a relatively uniform pore size distribution upon thermal treatment. The acid removal in the evaporation is another key factor to promote network condensation in this route. © 2013 American Chemical Society.