956 resultados para structure-induced equilibrium
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.
Resumo:
We reanalyze the decay mode of Lambda hypernuclei induced by two nucleons modifying previous numerical results and the interpretation of the process. The repercussions of this channel in the ratio of neutron to proton induced Lambda decay is studied in detail in connection with the present experimental data. This leads to ratios that are in greater contradiction with usual one pion exchange models than those deduced before.
Resumo:
We introduce a class of exactly solvable models exhibiting an ordering noise-induced phase transition in which order arises as a result of a balance between the relaxing deterministic dynamics and the randomizing character of the fluctuations. A finite-size scaling analysis of the phase transition reveals that it belongs to the universality class of the equilibrium Ising model. All these results are analyzed in the light of the nonequilibrium probability distribution of the system, which can be obtained analytically. Our results could constitute a possible scenario of inverted phase diagrams in the so-called lower critical solution temperature transitions.
Resumo:
In the latest years the importance of high resolution analysis of the microbial cell surface has been increasingly recognized. Indeed, in order to better understand bacterial physiology and achieve rapid diagnostic and treatment techniques, a thorough investigation of the surface modifications induced on bacteria by different environmental conditions or drugs is essential. Several instruments are nowadays available to observe at high resolution specific properties of microscopic samples. Among these, AFM can routinely study single cells in physiological conditions, measuring the mechanical properties of their membrane at a nanometric scale (force volume). Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work we exploit such technique to characterize bacterial systems. We have performed an analysis of the mechanical properties of bacteria (Escherichia coli) exposed to different conditions. Such measurements were performed on living bacteria, by changing in real-time the liquid environment: standard phosphate buffered saline, antibiotic (ampicillin) in PBS and growth medium. In particular we have focused on the determination of the membrane stiffness modifications induced by these solutions, in particular between stationary and replicating phases and what is the effect of the antibiotic on the bacterial structure.
Resumo:
A general and straightforward analytical expression for the defect-state-energy distribution of a-Si:H is obtained through a statistical-mechanical treatment of the hydrogen occupation for different sites. Broadening of available defect energy levels (defect pool) and their charge state, both in electronic equilibrium and nonequilibrium steady-state situations, are considered. The model gives quantitative results that reproduce different defect phenomena, such as the thermally activated spin density, the gap-state dependence on the Fermi level, and the intensity and temperature dependence of light-induced spin density. An interpretation of the Staebler-Wronski effect is proposed, based on the ''conversion'' of shallow charged centers to neutrals near the middle of the gap as a consequence of hydrogen redistribution.
Resumo:
The Organization of the Thesis The remainder of the thesis comprises five chapters and a conclusion. The next chapter formalizes the envisioned theory into a tractable model. Section 2.2 presents a formal description of the model economy: the individual heterogeneity, the individual objective, the UI setting, the population dynamics and the equilibrium. The welfare and efficiency criteria for qualifying various equilibrium outcomes are proposed in section 2.3. The fourth section shows how the model-generated information can be computed. Chapter 3 transposes the model from chapter 2 in conditions that enable its use in the analysis of individual labor market strategies and their implications for the labor market equilibrium. In section 3.2 the Swiss labor market data sets, stylized facts, and the UI system are presented. The third section outlines and motivates the parameterization method. In section 3.4 the model's replication ability is evaluated and some aspects of the parameter choice are discussed. Numerical solution issues can be found in the appendix. Chapter 4 examines the determinants of search-strategic behavior in the model economy and its implications for the labor market aggregates. In section 4.2, the unemployment duration distribution is examined and related to search strategies. Section 4.3 shows how the search- strategic behavior is influenced by the UI eligibility and section 4.4 how it is determined by individual heterogeneity. The composition effects generated by search strategies in labor market aggregates are examined in section 4.5. The last section evaluates the model's replication of empirical unemployment escape frequencies reported in Sheldon [67]. Chapter 5 applies the model economy to examine the effects on the labor market equilibrium of shocks to the labor market risk structure, to the deep underlying labor market structure and to the UI setting. Section 5.2 examines the effects of the labor market risk structure on the labor market equilibrium and the labor market strategic behavior. The effects of alterations in the labor market deep economic structural parameters, i.e. individual preferences and production technology, are shown in Section 5.3. Finally, the UI setting impacts on the labor market are studied in Section 5.4. This section also evaluates the role of the UI authority monitoring and the differences in the Way changes in the replacement rate and the UI benefit duration affect the labor market. In chapter 6 the model economy is applied in counterfactual experiments to assess several aspects of the Swiss labor market movements in the nineties. Section 6.2 examines the two equilibria characterizing the Swiss labor market in the nineties, the " growth" equilibrium with a "moderate" UI regime and the "recession" equilibrium with a more "generous" UI. Section 6.3 evaluates the isolated effects of the structural shocks, while the isolated effects of the UI reforms are analyzed in section 6.4. Particular dimensions of the UI reforms, the duration, replacement rate and the tax rate effects, are studied in section 6.5, while labor market equilibria without benefits are evaluated in section 6.6. In section 6.7 the structural and institutional interactions that may act as unemployment amplifiers are discussed in view of the obtained results. A welfare analysis based on individual welfare in different structural and UI settings is presented in the eighth section. Finally, the results are related to more favorable unemployment trends after 1997. The conclusion evaluates the features embodied in the model economy with respect to the resulting model dynamics to derive lessons from the model design." The thesis ends by proposing guidelines for future improvements of the model and directions for further research.
Resumo:
The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Gashape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at boththe martensitic variant and magnetic domain length scales. A large entropy change induced by moderatemagnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not verydifferent. We also show that this entropy change is not associated with the entropy difference between themartensitic and the parent phase arising from the change in the crystallographic structure which has beenfound to be independent of the magnetic field within this range of fields.
Resumo:
Interaction models of atomic Al with Si4H9, Si4H7, and Si6H9 clusters have been studied to simulate Al chemisorption on the Si(111) surface in the atop, fourfold atop, and open sites. Calculations were carried out using nonempirical pseudopotentials in the framework of the ab initio Hartree-Fock procedure. Equilibrium bond distances, binding energies for adsorption, and vibrational frequencies of the adatoms are calculated. Several basis sets were used in order to show the importance of polarization effects, especially in the binding energies. Final results show the importance of considering adatom-induced relaxation effects to specify the order of energy stabilities for the three different sites, the fourfold atop site being the preferred one, in agreement with experimental findings.
Resumo:
In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study we tested whether communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of maize (Zea mays L.) were affected by soil tillage practices (plowing, chiseling, and no-till) in a long-term field experiment carried out in Tanikon (Switzerland). AMF were identified in the roots using specific polymerase chain reaction (PCR) markers that had been developed for the AMF previously isolated from the soils of the studied site. A nested PCR procedure with primers of increased specificity (eukaryotic, then, fungal, then AMF species or. species-grouop specific) was used. Sequencing of amplified DNA confirmed that the DNA obtained from the maize roots was of AMF origin. Presence of particular AMF species or species-group was scored as a presence of a DNA product after PCR with specific primers. We also used single-strand conformation polymorphism analysis (SSCP), of amplified DNA samples to-check if the amplification of the DNA from maize roots matched the expected profile for a particular AMF isolate with a given specific primer pair. Presence of the genus Scutellospora, in maize roots was strongly reduced in plowed and chiseled soils. Fungi from the suborder Glomineae were more prevalent colonizers of maize roots growing in plowed soils, but were also present in the roots from other tillage treatments. These changes in community of AMF colonizing maize roots might be due to (1), the differences in tolerance to the tillage-induced disruption of the hyphae among the different AMF species, (2) changes in nutrient content of the soil, (3) changes in microbial activity, or (4) changes in weed populations in response to soil tillage. This is the first report on community composition of AMF in the roots of a field-grown crop plant (maize) as affected by soil tillage.
Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders.
Resumo:
There remains much scientific, clinical, and ethical controversy concerning the use of electroconvulsive therapy (ECT) for psychiatric disorders stemming from a lack of information and knowledge about how such treatment might work, given its nonspecific and spatially unfocused nature. The mode of action of ECT has even been ascribed to a "barbaric" form of placebo effect. Here we show differential, highly specific, spatially distributed effects of ECT on regional brain structure in two populations: patients with unipolar or bipolar disorder. Unipolar and bipolar disorders respond differentially to ECT and the associated local brain-volume changes, which occur in areas previously associated with these diseases, correlate with symptom severity and the therapeutic effect. Our unique evidence shows that electrophysical therapeutic effects, although applied generally, take on regional significance through interactions with brain pathophysiology.
Resumo:
Like numerous other eukaryotic organelles, the vacuole of the yeast Saccharomyces cerevisiae undergoes coordinated cycles of membrane fission and fusion in the course of the cell cycle and in adaptation to environmental conditions. Organelle fission and fusion processes must be balanced to ensure organelle integrity. Coordination of vacuole fission and fusion depends on the interactions of vacuolar SNARE proteins and the dynamin-like GTPase Vps1p. Here, we identify a novel factor that impinges on the fusion-fission equilibrium: the vacuolar H(+)-ATPase (V-ATPase) performs two distinct roles in vacuole fission and fusion. Fusion requires the physical presence of the membrane sector of the vacuolar H(+)-ATPase sector, but not its pump activity. Vacuole fission, in contrast, depends on proton translocation by the V-ATPase. Eliminating proton pumping by the V-ATPase either pharmacologically or by conditional or constitutive V-ATPase mutations blocked salt-induced vacuole fragmentation in vivo. In living cells, fission defects are epistatic to fusion defects. Therefore, mutants lacking the V-ATPase display large single vacuoles instead of multiple smaller vacuoles, the phenotype that is generally seen in mutants having defects only in vacuolar fusion. Its dual involvement in vacuole fission and fusion suggests the V-ATPase as a potential regulator of vacuolar morphology and membrane dynamics.
Resumo:
Several models have been proposed to understand how so many species can coexist in ecosystems. Despite evidence showing that natural habitats are often patchy and fragmented, these models rarely take into account environmental spatial structure. In this study we investigated the influence of spatial structure in habitat and disturbance regime upon species' traits and species' coexistence in a metacommunity. We used a population-based model to simulate competing species in spatially explicit landscapes. The species traits we focused on were dispersal ability, competitiveness, reproductive investment and survival rate. Communities were characterized by their species richness and by the four life-history traits averaged over all the surviving species. Our results show that spatial structure and disturbance have a strong influence on the equilibrium life-history traits within a metacommunity. In the absence of disturbance, spatially structured landscapes favour species investing more in reproduction, but less in dispersal and survival. However, this influence is strongly dependent on the disturbance rate, pointing to an important interaction between spatial structure and disturbance. This interaction also plays a role in species coexistence. While spatial structure tends to reduce diversity in the absence of disturbance, the tendency is reversed when disturbance occurs. In conclusion, the spatial structure of communities is an important determinant of their diversity and characteristic traits. These traits are likely to influence important ecological properties such as resistance to invasion or response to climate change, which in turn will determine the fate of ecosystems facing the current global ecological crisis.
Resumo:
Diabetes is associated with significant changes in plasma concentrations of lipoproteins. We tested the hypothesis that lipoproteins modulate the function and survival of insulin-secreting cells. We first detected the presence of several receptors that participate in the binding and processing of plasma lipoproteins and confirmed the internalization of fluorescent low density lipoprotein (LDL) and high density lipoprotein (HDL) particles in insulin-secreting beta-cells. Purified human very low density lipoprotein (VLDL) and LDL particles reduced insulin mRNA levels and beta-cell proliferation and induced a dose-dependent increase in the rate of apoptosis. In mice lacking the LDL receptor, islets showed a dramatic decrease in LDL uptake and were partially resistant to apoptosis caused by LDL. VLDL-induced apoptosis of beta-cells involved caspase-3 cleavage and reduction in the levels of the c-Jun N-terminal kinase-interacting protein-1. In contrast, the proapoptotic signaling of lipoproteins was antagonized by HDL particles or by a small peptide inhibitor of c-Jun N-terminal kinase. The protective effects of HDL were mediated, in part, by inhibition of caspase-3 cleavage and activation of Akt/protein kinase B. In conclusion, human lipoproteins are critical regulators of beta-cell survival and may therefore contribute to the beta-cell dysfunction observed during the development of type 2 diabetes.