976 resultados para strong-field


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin-orbit interactions in a two-dimensional electron gas were studied in an InAlAs/InGaAs/InAlAs quantum well. Since weak anti localization effects take place far beyond the diffusive regime, (i.e., the ratio of the characteristic magnetic field, at which the magnetoresistance correction maximum occurs, to the transport magnetic field is more than ten) the experimental data are examined by the Golub theory, which is applicable to both diffusive regime and ballistic regime. Satisfactory fitting lines to the experimental data have been achieved using the Golub theory. In the strong spin-orbit interaction two-dimensional electron gas system, the large spin splitting energy of 6.08 meV is observed mainly due to the high electron concentration in the quantum well. The temperature dependence of the phase-breaking rate is qualitatively in agreement with the theoretical predictions. (C) 2009 The Japan Society of Applied Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the single-electron and two-electron vertically assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks in an axial magnetic field. The change of the magnetic field strongly modifies the electronic structures as an effective potential, leading to the splitting of the levels and the crossings between the levels. The effect of the vertical alignment on the electronic structures is discussed. It is demonstrated that the switching of the ground-state spin exists between S=0 and S=1. The energy difference DeltaE between the lowest S=0 and S=1 states is shown as a function of the axial magnetic field. It is also found that the variation of the energy difference between the lowest S=0 and S=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a qubit to be fabricated by current growth techniques. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a VSAL structure fabricated by a 650 nm edge emitting laser diode with an Au-coated facet and an aperture size of 250 x 500 nm. The far field output power can maintain at 1 mW and the power density is 7.5 mW/mu m(2). Some properties of the VSAL including the threshold current change, the red-shift of the spectral position, and the strong relative-intensity-noise are presented. The physical mechanisms responsible for these phenomena are also discussed, which may contribute to the understanding and application of the potential device for near-field optics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembled growth of vertically well-aligned ZnO nanorod arrays with uniform length and diameter on Si substrate has been demonstrated via thermal evaporation and vapor-phase transport. The structural, photoluminescence (PL), and field emission properties of the as-prepared nanorod arrays were investigated. The PL spectrum at 10 K shows a strong and sharp near-band gap emission (NBE) peak ( full width at half-maximum (FWHM) = 4.7 meV) and a weak neglectable deep-level emission (DL) peak (I-NBE/I-DL= 220), which implies its good crystallinity and high optical quality. The room-temperature NBE peak was deduced to the composition of free exciton and its first-order replicas emissions by temperature-dependent PL spectra. The field emission measurements indicate that, with a vacuum gap of 400 Am, the turn-on field and threshold field is as low as 2.3 and 4.2 V/mu m. The field enhancement factor beta and vacuum gap d follows a universal equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the Huang-Zhu model [K. Huang and B.-F. Zhu, Phys. Rev. B 38, 13377 (1988)] for the optical phonons and associated carrier-phonon interactions in semiconductor superlattices, the effects of longitudinal electric field on the energy-loss rates (ELRs) of hot carriers as well as on the hot-phonon effect (HPE) in GaAs/AlAs quantum wells (QWs) are studied systematically. Contributions of various bulklike and interface phonons to the hot-carrier relaxation are compared in detail, and comprehensively analyzed in relation to the intrasubband and intersubband scatterings for quantum cascade lasers. Due to the broken parity of the electron (hole) states in the electric field, the bulklike modes with antisymmetric potentials are allowed in the intrasubband relaxation processes, as well as the modes with symmetric potentials. As the interface phonon scattering is strong only in narrow wells, in which the electric field affects the electron (hole) states little, the ELRs of hot carriers through the interface phonon scattering are not sensitive to the electric field. The HPE on the hot-carrier relaxation process in the medium and wide wells is reduced by the electric field. The influence of the electric field on the hot-phonon effect in quantum cascade lasers is negligible. When the HPE is ignored, the ELRs of hot electrons in wide QWs are decreased noticeably by the electric field, but slightly increased by the field when considering the HPE. In contrast with the electrons, the ELRs of hot holes in wide wells are increased by the field, irrespective of the HPE. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relations between the gain factor, defined as the ratio of modal gain to material gain, and the optical confinement factor are discussed for the TE and TM modes in slab waveguides. For the TE modes, the gain factor is larger than the optical confinement factor, due to the zigzag propagation of the modal light ray in the core layers. For the TM modes, the existence of a nonzero electric field in the propagation direction results in a more complicated relation of the gain factor and the confinement factor. For an air-Si-SiO2 strong slab waveguide, the numerical results show that the modal gain can be larger than the material gain and the higher-order transverse mode can have an even larger modal gain than the fundamental mode, The efficiency of waveguiding photodetectors can be improved by applying the modal gain or loss characteristics in strong waveguides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure of an InAs self-assembled quantum dot in the presence of a perpendicular magnetic field is investigated theoretically. The effect of finite offset, valence-band mixing, and strain are taken into account. The hole levels show strong anticrossings. The large strain and strong magnetic field decrease the effect of mixing between heavy hole and light hole. The hole energy levels have in general a weaker field dependence compared with the corresponding uncoupled levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beating patterns in the Shubnikov-de Haas oscillatory magnetoresistance originating from zero-field spin splitting of two-dimensional electron gases (2DEGs) in In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As quantum wells with silicon delta doped on the upper barrier layer have been investigated by means of magnetotransport measurements before and after illumination. Contrary to the expectation, after each illumination, the beating nodes induced by the zero-field spin-splitting effect shift to lower and lower magnetic field due to the decrease in the zero-field spin-splitting energy of the 2DEGs. The anomalous phenomenon of the shift of the beating nodes and the decrease in spin-orbit coupling constants after illumination cannot be explained by utilizing the previous linear Rashba model. It is suggested that the decrease in the zero-field spin-splitting energy and the spin-orbit coupling constant arise from the nonlinear Rashba spin splitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetoexcitonic optical absorption of a GaAs bulk semiconductor driven by a terahertz (THz) field is investigated numerically. The method of the solution of the initial-value problem, in combination with the perfect matched layer technique, is used to calculate the optical susceptibility, with Coulomb interaction, Landau quantization, and THz fields involved nonperturbatively. It shows that there appear replicas and sidebands of magnetoexciton of different Landau levels, which greatly enrich the magneto-optical spectrum in the presence of a driving THz field. Copyright (C) EPLA, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear optical absorption in a three-subband step asymmetric semiconductor quantum well driven by a strong terahertz (THz) field is investigated theoretically by employing the intersubband semiconductor-Bloch equations. We show that the optical absorption spectrum strongly depends on the intensity, frequency, and phase of the pump THz wave. The strong THz field induces THz sidebands and Autler-Townes splitting in the probe absorption spectrum. Varying the pump frequency can bring not only the new absorption peaks but also the changing of the energy separation of the two higher-energy levels. The dependence of the absorption spectrum on the phase of the pump THz wave is also very remarkable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have conducted numerical studies of ballistic electron transport in a semiconductor II-structure when an external transverse electric field is applied. The device conductance as a function of electron energy and the strength of the transverse electric field is calculated on the basis of tight-binding Green's function formalism. The calculations show that a relatively weak electric field can induce very large decrease in the electron transmission across the structure. When the transverse electric field is sufficiently strong, electrons can hardly be transported through the device. Thus the performance of the device can be greatly improved for it is much easier to control electron transport through the device with an external transverse electric field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.