989 resultados para strategic investment
Resumo:
This paper presents a methodology to establish investment and trading strategies of a power generation company. These strategies are integrated in the ITEM-Game simulator in order to test their results when played against defined strategies used by other players. The developed strategies are focused on investment decisions, although trading strategies are also implemented to obtain base case results. Two cases are studied considering three players with the same trading strategy. In case 1, all players also have the same investment strategy driven by a market target share. In case 2, player 1 has an improved investment strategy with a target share twice of the target of players 2 and 3. Results put in evidence the influence of the CO2 and fuel prices in the company investment decision. It is also observed the influence of the budget constraint which might prevent the player to take the desired investment decision.
Resumo:
Ramsey pricing has been proposed in the pharmaceutical industry as a principle to price discriminate among markets while allowing to recover the (fixed) R&D cost. However, such analyses neglect the presence of insurance or the fund raising costs for most of drug reimbursement. By incorporating these new elements, we aim at providing some building blocks towards an economic theory incorporating Ramsey pricing and insurance coverage. We show how coinsurance affects the optimal prices to pay for the R&D investment. We also show that under certain conditions, there is no strategic incentive by governments to set coinsurance rates in order to shift the financial burden of R&D. This will have important implications to the application of Ramsey pricing principles to pharmaceutical products across countries.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas Orientada pelo Professor Doutor José Freitas Santos
Resumo:
Journal of Business, Vol. 78 Issue 3, p1049-1072
Resumo:
This study aims to understand the reality of social service organizations, the level of implementation of the strategic planning as well as the impact of its application on organizational effectiveness. At first, we will group organizations in clusters according to the level of strategic planning implementation and its degree of effectiveness. Secondly, we will analyse all the different groups. Given the growing number of social service organizations and the consequent complexity of their structures, it turns out the need for these organizations adopt formal management techniques. Strategic planning is a valuable strategic management tool and one of its main objectives is to make organizations more effective. Therefore, the research has been conducted in order to determine if strategic planning is implemented in social service organizations and which effects has its application on organizational effectiveness. The survey, applied to 220 social service organizations, allowed us to gather them into different clusters, showing that different levels of strategic planning determine distinct degrees of organizational efficiency. Finally, it should be noted that findings of this research may be essential to decision makers of these organizations, because it was shown that the adoption of strategic planning has a positive influence on organizational effectiveness of social service organizations.
Resumo:
Within a large set of renewable energies being explored to tackle energy sourcing problems, bioenergy can represent an attractive solution if effectively managed. The supply chain design supported by mathematical programming can be used as a decision support tool to the successful bioenergy production systems establishment. This strategic decision problem is addressed in this paper where we intent to study the design of the residual forestry biomass to bioelectricity production in the Portuguese context. In order to contribute to attain better solutions a mixed integer linear programming (MILP) model is developed and applied in order to optimize the design and planning of the bioenergy supply chain. While minimizing the total supply chain cost the production energy facilities capacity and location are defined. The model also includes the optimal selection of biomass amounts and sources, the transportation modes selection, and links that must be established for biomass transportation and products delivers to markets. Results illustrate the positive contribution of the mathematical programming approach to achieve viable economic solutions. Sensitivity analysis on the most uncertain parameters was performed: biomass availability, transportation costs, fixed operating costs and investment costs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Comunicação apresentada na 17ª Conferência Anual da Network of Intitutes and Schools of Public Administration (NISPA) em Birdua, Montenegro de 14 a 16 dem Maio de 2009.
Resumo:
Proceedings of the First International Conference on Coastal Conservation and Management in the Atlantic and Mediterranean, p. 91-98
Resumo:
The deregulation of electricity markets has diversified the range of financial transaction modes between independent system operator (ISO), generation companies (GENCO) and load-serving entities (LSE) as the main interacting players of a day-ahead market (DAM). LSEs sell electricity to end-users and retail customers. The LSE that owns distributed generation (DG) or energy storage units can supply part of its serving loads when the nodal price of electricity rises. This opportunity stimulates them to have storage or generation facilities at the buses with higher locational marginal prices (LMP). The short-term advantage of this model is reducing the risk of financial losses for LSEs in DAMs and its long-term benefit for the LSEs and the whole system is market power mitigation by virtually increasing the price elasticity of demand. This model also enables the LSEs to manage the financial risks with a stochastic programming framework.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.
Resumo:
Atualmente, existe uma constante necessidade de inovação tecnológica e organizacional das empresas, face às exigências do mercado e ao aumento constante da competitividade. No contexto da economia atual, e para contrariar a falta de investimento dos últimos anos, as empresas concentram-se no desenvolvimento de negócios bem estruturados e organizados, que satisfaçam as exigências de cada cliente. Revela-se, assim, muito importante a avaliação de desempenho para o alcance do seu sucesso, permitindo alinhar as atividades operacionais com a visão organizacional, fomentar a comunicação da estratégia e gerir o seu desempenho. É neste contexto que ganha importância o Balanced Scorecard, um instrumento que permite avaliar o desempenho organizacional, funcionando também como uma ferramenta de gestão. Tem, portanto, como principais objetivos definir claramente uma estratégia, definir objetivos, indicadores e medidas estratégicas, planear e estabelecer metas e melhorar continuamente os resultados obtidos. Esta ferramenta analisa a organização em quatro diferentes perspetivas: financeira, clientes, processos internos e apendizagem e crescimento. Cada uma delas deve estrututrar os seus próprios objetivos, indicadores, metas e iniciativas de forma a contribuir para o desenvolvimento da estratégia da organização e avaliar o seu desempenho. O desafio deste relatório é adaptar esta metodologia durante a realização de um estágio curricular na empresa Bysteel, que tem por base a implementação de um processo de gestão estratégica nas suas empreitadas, através do Balanced Scorecard. Este planemamento surge como um dos principais requisitos para uma gestão eficaz de custos e de tempo planeados para cada empreitada da Bysteel. Este processo torna-se bastante complexo dado que cada obra apresenta diferentes particularidades. A implementação desta metodologia numa empresa desta dimensão é um fator muito motivador, tornando-se ainda mais interessante pelo facto de se tratar de uma implementação numa nova vertente.