919 resultados para stimulation-produced antinociception
Resumo:
Diketopiperazine (DKP) derivatives, named colletopiperazine, fusaperazine C and E as well as four known DKPs were isolated from cultures of Colletotrichum gloeosporioides, Penicillium crustosum, both endophytic fungi isolated from Viguiera robusta, and a Fusarium spp., an endophyte of Viguiera arenaria, respectively. Their structures were established on the basis of their spectroscopic data. Conformational analysis of two known DKPs showed that folded conformations were as energetically stable as the extended one. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Aim of the study: The aerial parts of Baccharis dracunculifolia D.C., popularly known as ""alecrim do campo"" are used in folk medicine as anti-inflammatory. The aim of the present study was to evaluate the anti-inflammatory and antinociceptive activities of the crude hydroalcoholic extract obtained from leaves of Baccharis dracunculifolia (BdE), which have not been reported. Matetials and methods: BdE was analyzed by HPLC and in vivo evaluated (doses ranging from 50 to 400 mg/kg, p.o.) by using the acetic acid-induced abdominal constrictions, paw oedema induced by carrageenan or histamine, overt nociception models using capsaicin, glutamate or phorbol myristate acetate (PMA), formalin-induced nociception and mechanical hypernociception induced by carrageenan or complete Freund adjuvant (CFA). As positive controls it was used paracetamol in both acetic acid and formalin tests; dipyrone in capsaicin, glutamate and PMA-induced nociception; indomethacin in CFA and carrageenan-induced hypernociception models. In addition, the in vitro effects of BdE on COX-2 activity and on the activation of NF-kappa B were also evaluated. Results: BdE (50-400 mg/kg, p.o.) significantly diminished the abdominal constrictions induced by acetic acid, glutamate and CFA. Furthermore, BdE also inhibited the nociceptive responses in both phases of formalin-induced nociception. BdE, administered orally, also produced a long-lasting anti-hypernociceptive effect in the acute model of inflammatory pain induced by carrageenan. It was also observed the inhibition of COX-2 activity by BdE. Conclusion: In summary, the data reported in this work confirmed the traditional anti-inflammatory indications of Baccharis dracunculifolia leaves and provided biological evidences that Baccharis dracunculifolia, like Brazilian green propolis, possess antinociceptive and anti-inflammatory activities. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Iron and oxidative stress have a regulatory interplay. During the oxidative burst, phagocytic cells produce free radicals such as hypochlorous acid (HOCl). Nevertheless, scarce studies evaluated the effect of either iron deficiency anemia (IDA) or anemia of chronic disease (ACD) on phagocyte function in the elderly. The aim of the present study was to determine the oxidative burst, phagocytosis, and nitric oxide ((aEuro cent)NO) and HOCl, reactive species produced by monocytes and neutrophils in elderly with ACD or IDA. Soluble transferrin receptor, serum ferritin, and soluble transferrin receptor/log ferritin (TfR-F) index determined the iron status. The study was constituted of 39 patients aged over 60 (28 women and 11 men) recruited from the Brazilian Public Health System. Oxidative burst fluorescence intensity per neutrophil in IDA group and HOCl generation in both ACD and IDA groups were found to be lower (p < 0.05). The percentages of neutrophils and monocytes expressing phagocytosis in ACD group were found to be higher (p < 0.05). There was an overproduction of (aEuro cent)NO from monocytes, whereas the fundamental generation of HOCl appeared to be lower. Phagocytosis, oxidative burst, and (aEuro cent)NO and HOCl production are involved in iron metabolism regulation in elderly patients with ACD and IDA.
Resumo:
The role of beta(3)- and other putative atypical beta-adrenaceptors in human white adipocytes and right atrial appendage has been investigated using CGP 12177 and novel phenylethanolamine and aryloxypropanolamine beta(3)-adrenoceptor (beta(3)AR) agonists with varying intrinsic activities and selectivities for human cloned PAR subtypes. The ability to demonstrate beta(1/2)AR antagonist-insensitive (beta(3) or other atypical beta AR-mediated) responses to CGP 12177 was critically dependent on the albumin batch used to prepare and incubate the adipocytes. Four aryloxypropanolamine selective beta(3)AR agonists (SB-226552, SB-229432, SB-236923, SB-246982) consistently elicited beta(1/2)AR antagonist-insensitive lipolysis. However, a phenylethanolamine (SB-220646) that was a selective full beta(3)AR agonist elicited full lipolytic and inotropic responses that were sensitive to beta(1/2)AR antagonism, despite it having very low efficacies at cloned beta(1)- and beta(2)ARs. A component of the response to another phenylethanolamine selective beta(3)AR agonist (SB-215691) was insensitive to beta(1/2)AR antagonism in some experiments. Because novel aryloxypropanolamine had a beta(1/2)AR antagonist-insensitive inotropic effect, these results establish more firmly that beta(3)ARs mediate lipolysis in human white adipocytes, and suggest that putative 'beta(4)ARs' mediate inotropic responses to CGP 12177. The results also illustrate the difficulty of predicting from studies on cloned beta ARs which beta ARs will mediate responses to agonists in tissues that have a high number of beta(1)- and beta(2)ARs or a low number of beta(3)ARs.
Resumo:
Recent evidence suggests that dopamine, acting via its D1 receptors, may function as a neurotransmitter in intrahypothalamic pathways involved in the stimulation of prolactin secretion. Functional dopamine D1 receptors are present in the ventromedial hypothalamic nucleus (VMH) and we hypothesized that they might be part of a prolactin-stimulatory pathway activated by stress. We tested this hypothesis in a series of experiments on sheep involving two different forms of stressors, audiovisual (barking dog) and high environmental temperature. We attempted to block the stimulation of prolactin secretion by infusion into the VMH of an antagonist specific for the D1 receptor. Ovariectomised, oestradiol-implanted merino ewes were surgically implanted with bilateral guide tubes directed at the VMH. After a 180 min pretreatment period, the ewes either were or were not exposed to a stressor (30 min of barking dog or 120 min at 35 degrees C, 65% relative humidity). D1 receptor antagonist, SCH23390 or vehicle (0.9% saline) was infused into the VMH (1.7 mu l/h, 120 nmol/h) for 60 min prior to and during the stressor period. Blood was sampled every 15 min via jugular cannulae and the plasma was assayed for prolactin, cortisol and growth hormone (GH). Both stressors significantly increased prolactin concentrations over control levels. SCH23390 infusion significantly attenuated the prolactin response to high environmental temperature, but had no effect on the prolactin response to audiovisual stress. Cortisol concentrations were significantly increased by audiovisual stress only and were not affected by SCH23390, GH concentrations were not changed by either stressor or infusion. Drug infusion alone did not affect the concentration of the hormones. The data suggest that the VMH D1 receptors are involved in a prolactin stimulatory pathway in response to high environmental temperature. The inability of the D1 antagonist to affect the response to the barking dog indicates that this pathway is stress-specific, implying that there is more than one mechanism or pathway involved in the prolactin response to different stressors.
Resumo:
Although morphine-6-glucuronide (M6G) has been shown to be analgesically active, the relative involvement of spinal and supraspinal structures in mediating M6G's pain-relieving effects following central and systemic administration to rats is unclear. As the tail flick and hotplate latency tests are reported to quantify antinociception mediated primarily by spinal and supraspinal mechanisms respectively, these methods were used to determine the comparative apparent levels of antinociception (expressed as percentage maximum possible effect, % MPE) achieved after M6G or morphine administration. Following i.v. or i.p. M6G (1.9-5.4 mu mol) dosing or i.p. morphine (10 mu mol) dosing, high levels of antinociception (>50% MPE) were achieved using the tail flick test whereas base-line levels of antinociception were observed 30 sec later in the same rats using the hotplate test. By contrast, antinociception evoked by i.v. morphine (10 mu mol) exceeded 50% MPE using both the hotplate and tail flick tests although the apparent potency was approximately 2.5 times greater using the tail flick test. After i.c.v. dosing, M6G (0.22-3.3 nmol) was significantly (P < .05) more potent when assessed using the tail flick compared with the hotplate test. Taken together, these data strongly indicate that following central and systemic administration, M6G's antinociceptive effects are mediated primarily by spinal structures whereas both spinal and supraspinal mechanisms contribute to systemic morphine's antinociceptive effects.
Resumo:
Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.
Resumo:
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm(2) embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T-1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).
Resumo:
Chloramphenicol, an in vitro inhibitor of the glucuronidation of morphine to its putative antianalgesic metabolite, morphine-3-glucuronide (M3G), was coadministered with morphine in adult male Sprague-Dawley rats to determine whether it inhibited the in vivo metabolism of morphine to M3G, thereby enhancing morphine antinociception and/or delaying the development of antinociceptive tolerance. Parenteral chloramphenicol was given acutely (3-h studies) or chronically (48-h studies). Morphine was administered by the i.v. or i.c.v. route. Control rats received chloramphenicol and/or vehicle. Antinociception was quantified using the hotplate latency test. Coadministration of chloramphenicol with i.v. but not i.cv. morphine increased the extent and duration of morphine antinociception by approximate to 5.5-fold relative to rats that received i.v. morphine alone. Thus, the mechanism through which chloramphenicol enhances i.v. morphine antinociception in the rat does not directly involve supraspinal opioid receptors. Acutely, parenteral coadministration of chloramphenicol and morphine resulted in an approximate to 75% increase in the mean area under the serum morphine concentration-time curve but for chronic dosing there was no significant change in this curve, indicating that factors other than morphine concentrations contribute significantly to antinociception. Antinociceptive tolerance to morphine developed more slowly in rats coadministered chloramphenicol, consistent with our proposal that in vivo inhibition of M3G formation would result in increased antinociception and delayed development of tolerance. However, our data also indicate that chloramphenicol inhibited the biliary secretion of M3G. Whether chloramphenicol altered the passage of M3G and morphine across the blood-brain barrier remains to be investigated.
Resumo:
In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP-without concurrent activity of the abdominal or back extensor muscles-produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to similar to 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (similar to6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Cultured melanoma cells release soluble factors that influence immune responses. Screening of a cDNA library with anti-sera from a melanoma patient identified an immunoreactive plaque, which encoded heavy-chain ferritin (H-ferritin), Previous studies have drawn attention to the immunosuppressive effects of this molecule and prompted further studies on its biochemical and functional properties in human melanoma, These studies demonstrated, firstly, that H-ferritin appeared to be secreted by melanoma cells, as shown by immunoprecipitation of a 21.5 kDa band from supernatants. It was also detected in extracts of melanoma cells by Western blotting as 43 and 64 kDa dimers and trimers of the 21.5 kDa fraction. Secondly, flow-cytometric analysis of H- and light-chain ferritin (L-ferritin) expression on melanoma showed a wide variation in L-ferritin expression and consequently of the ratio of H- to L-ferritin expression. Suppression of mitogenic responses of lymphocytes to anti-CD3 showed a correlation with the ratio of H- to L-ferritin in the supernatants and was specific for H-ferritin, as shown by inhibition studies with a monoclonal antibody (MAb) against H-ferritin, Similar results were obtained with H- and L-ferritin from other sources. Suppression of mitogenic responses of lymphocytes to anti-CD3 by H-ferritin was inhibited using a MAb against IL-IO, which suggested that the immunosuppressive effect of H-ferritin was mediated by IL-IO, Assays of cytokine production from anti-CD3-stimulated lymphocytes showed that H-ferritin markedly increased production of IL-10 and IFN-gamma and had only slight effects on IL-2 and IL-4 production, Our results suggest that melanoma cells may be a major source of H-ferritin and that production of the latter may account for some of the immunosuppressive effects of melanoma, (C) 2001 Wiley-Liss. Inc.
Resumo:
Heavy chain ferritin (H-ferritin) Is a component of the Iron-binding protein, ferritin. We have previously shown that H-ferritin Inhibits anti-CD3-stimulated lymphocyte proliferation and that this was due to Increased production of Interleukin-10 (IL-10). In the present study we have shown that Induction of IL-10 production was due to effects of H-ferritin on adherent antigen-presenting cells (APCs) In blood and monocyte-derived dendritic cells (MoDCs). IL-10 was produced by a subpopulation of CD4 T cells, which expressed the CD25 component of the IL-2 receptor and the CTLA-4 receptor characteristic of regulatory T cells. The changes Induced In MoDCs were compared with those Induced by CD40L and their significance tested by Inhibition with monoclonal antibodies. These studies Indicated that H-ferritin Induced relatively greater expression of CD86 and B7-H1 on MoDCs and that monoclonal antibodies against their receptors, CTLA-4 and programmed death receptor-1 (PD-1), Inhibited IL-10 production from the regulatory T cells. H-ferritin did not appear to Induce direct production of the cytokines IL-2, IL-4, IL-6, IL-10, IL-12, or Interferon-gamma from the DCs. These results are consistent with the thesis that H-ferritin Induces B7-H1 and CD86 (B7-2) on APCs, which In turn Induce IL-10 production from regulatory T cells. This is possibly one mechanism by which melanoma cells may Induce changes In APCs In the vicinity of the tumor and result in suppression of Immune responses by induction of regulatory T cells. (C) 2002 by The American Society of Hematology.
Resumo:
The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices coupled with high-speed imaging of intracellular calcium. Activation of muscarinic acetylcholine receptors by synaptic stimulation of cholinergic afferents or application of muscarinic agonist in CA1 pyramidal neurons evoked a focal rise in free calcium in the apical dendrite that propagated as a wave into the soma and invaded the nucleus. The calcium rise to a single action potential was reduced during muscarinic stimulation. Conversely, the calcium rise during trains of action potentials was enhanced during muscarinic stimulation. The enhancement of free intracellular calcium was most pronounced in the soma and nuclear regions. In many cases, the calcium rise was distinguished by a clear inflection in the rising phase of the calcium transient, indicative of a regenerative response. Both calcium waves and the amplification of action potential-induced calcium transients were blocked the emptying of intracellular calcium stores or by antagonism of inositol 1,4,5-trisphosphate receptors with heparin or caffeine. Ryanodine receptors were not essential for the calcium waves or enhancement of calcium responses. Because rises in nuclear calcium are known to initiate the transcription of novel genes, we suggest that these actions of cholinergic stimulation may underlie its effects on learning and memory.
Resumo:
AlSi7Mg0.35 alloy was cast into permanent moulds using different pouring temperatures (725 to 625degreesC). As the pouring temperature decreased, the as-cast microstructure changed from a coarse dendritic structure, through fine equiaxed grains to fine rosette-like grains. The as-cast materials were then partially remelted and isothermally held at 580degreesC prior to semisolid casting into a stepped die. The feedstock material cast from a high temperature filled only half the die, with severe segregation and other defects. The low-temperature-poured material completely filled the die with negligible porosity. The quality of semisolid castings is significantly affected by the microstructure of the semisolid feedstock material that arises from a combination of as-cast and subsequent thermal treatment conditions. The paper describes (a) the influence of pouring temperature on the microstructure of feedstock; (b) microstructure evolution through remelting and (c) the quality of semisolid castings produced with this material. For A17Si0.35Mg alloy, low temperature pouring in the range of 625-650degreesC followed by suitable isothermal holding treatment can result in good quality semisolid casting.