990 resultados para statistical reports
Resumo:
This paper discusses the statistical analyses used to derive bridge live loads models for Hong Kong from a 10-year weigh-in-motion (WIM) data. The statistical concepts required and the terminologies adopted in the development of bridge live load models are introduced. This paper includes studies for representative vehicles from the large amount of WIM data in Hong Kong. Different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc are first analyzed by various stochastic processes in order to obtain the mathematical distributions of these parameters. As a prerequisite to determine accurate bridge design loadings in Hong Kong, this study not only takes advantages of code formulation methods used internationally but also presents a new method for modelling collected WIM data using a statistical approach.
Resumo:
Many traffic situations require drivers to cross or merge into a stream having higher priority. Gap acceptance theory enables us to model such processes to analyse traffic operation. This discussion demonstrated that numerical search fine tuned by statistical analysis can be used to determine the most likely critical gap for a sample of drivers, based on their largest rejected gap and accepted gap. This method shares some common features with the Maximum Likelihood Estimation technique (Troutbeck 1992) but lends itself well to contemporary analysis tools such as spreadsheet and is particularly analytically transparent. This method is considered not to bias estimation of critical gap due to very small rejected gaps or very large rejected gaps. However, it requires a sufficiently large sample that there is reasonable representation of largest rejected gap/accepted gap pairs within a fairly narrow highest likelihood search band.
Resumo:
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov. We tackle in this paper the problem of adaptivity to this condition in the context of model selection, in a general learning framework. Actually, we consider a weaker version of this condition that allows one to take into account that learning within a small model can be much easier than within a large one. Requiring this “strong margin adaptivity” makes the model selection problem more challenging. We first prove, in a general framework, that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our second main result is that strong margin adaptivity is not always possible when the models are not nested: for every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate strong margin adaptivity.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
Objective: To assess the recall of media reports about vitamin D and associated factors. Methods: Analysis of cross-sectional telephone interview data (2,001 Queensland adults, 18-70 years) on vitamin D and personal sun protection, recall of media reports and participant characteristics. Results: 83.7% of participants had heard of vitamin D, 47.5% through the media. Only 513 (25.6%) participants recalled the media content within four main themes: vitamin D is beneficial/comes from the sun (47.0%); some people aren’t getting enough vitamin D, need more sun (27.9%); need to balance sun exposure and skin protection (11.5%); or other (13.6%). Only 65 of the 950 participants (6.8%) reported a change to their behaviour(s) due to the media report. Conclusion: Although the media were the main source of information about vitamin D for almost 50% of participants, recall of the content and direct effect on behaviour was low. Only a small minority recalled a balanced media report of beneficial and harmful aspects of sun exposure. Implications Health professionals often supply media with background information. To achieve best public health practice for sun protection and vitamin D, information to foster balanced media reports should be provided.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
It is important to promote a sustainable development approach to ensure that economic, environmental and social developments are maintained in balance. Sustainable development and its implications are not just a global concern, it also affects Australia. In particular, rural Australian communities are facing various economic, environmental and social challenges. Thus, the need for sustainable development in rural regions is becoming increasingly important. To promote sustainable development, proper frameworks along with the associated tools optimised for the specific regions, need to be developed. This will ensure that the decisions made for sustainable development are evidence based, instead of subjective opinions. To address these issues, Queensland University of Technology (QUT), through an Australian Research Council (ARC) linkage grant, has initiated research into the development of a Rural Statistical Sustainability Framework (RSSF) to aid sustainable decision making in rural Queensland. This particular branch of the research developed a decision support tool that will become the integrating component of the RSSF. This tool is developed on the web-based platform to allow easy dissemination, quick maintenance and to minimise compatibility issues. The tool is developed based on MapGuide Open Source and it follows the three-tier architecture: Client tier, Web tier and the Server tier. The developed tool is interactive and behaves similar to a familiar desktop-based application. It has the capability to handle and display vector-based spatial data and can give further visual outputs using charts and tables. The data used in this tool is obtained from the QUT research team. Overall the tool implements four tasks to help in the decision-making process. These are the Locality Classification, Trend Display, Impact Assessment and Data Entry and Update. The developed tool utilises open source and freely available software and accounts for easy extensibility and long-term sustainability.
Resumo:
The World Health Organization recommends that data on mortality in its member countries are collected utilising the Medical Certificate of Cause of Death published in the instruction volume of the ICD-10. However, investment in health information processes necessary to promote the use of this certificate and improve mortality information is lacking in many countries. An appeal for support to make improvements has been launched through the Health Metrics Network’s MOVE-IT strategy (Monitoring of Vital Events – Information Technology) [World Health Organization, 2011]. Despite this international spotlight on the need for capture of mortality data and in the use of the ICD-10 to code the data reported on such certificates, there is little cohesion in the way that certifiers of deaths receive instruction in how to complete the death certificate, which is the main source document for mortality statistics. Complete and accurate documentation of the immediate, underlying and contributory causes of death of the decedent on the death certificate is a requirement to produce standardised statistical information and to the ability to produce cause-specific mortality statistics that can be compared between populations and across time. This paper reports on a research project conducted to determine the efficacy and accessibility of the certification module of the WHO’s newly-developed web based training tool for coders and certifiers of deaths. Involving a population of medical students from the Fiji School of Medicine and a pre and post research design, the study entailed completion of death certificates based on vignettes before and after access to the training tool. The ability of the participants to complete the death certificates and analysis of the completeness and specificity of the ICD-10 coding of the reported causes of death were used to measure the effect of the students’ learning from the training tool. The quality of death certificate completion was assessed using a Quality Index before and after the participants accessed the training tool. In addition, the views of the participants about accessibility and use of the training tool were elicited using a supplementary questionnaire. The results of the study demonstrated improvement in the ability of the participants to complete death certificates completely and accurately according to best practice. The training tool was viewed very positively and its implementation in the curriculum for medical students was encouraged. Participants also recommended that interactive discussions to examine the certification exercises would be an advantage.
Resumo:
The research objectives of this thesis were to contribute to Bayesian statistical methodology by contributing to risk assessment statistical methodology, and to spatial and spatio-temporal methodology, by modelling error structures using complex hierarchical models. Specifically, I hoped to consider two applied areas, and use these applications as a springboard for developing new statistical methods as well as undertaking analyses which might give answers to particular applied questions. Thus, this thesis considers a series of models, firstly in the context of risk assessments for recycled water, and secondly in the context of water usage by crops. The research objective was to model error structures using hierarchical models in two problems, namely risk assessment analyses for wastewater, and secondly, in a four dimensional dataset, assessing differences between cropping systems over time and over three spatial dimensions. The aim was to use the simplicity and insight afforded by Bayesian networks to develop appropriate models for risk scenarios, and again to use Bayesian hierarchical models to explore the necessarily complex modelling of four dimensional agricultural data. The specific objectives of the research were to develop a method for the calculation of credible intervals for the point estimates of Bayesian networks; to develop a model structure to incorporate all the experimental uncertainty associated with various constants thereby allowing the calculation of more credible credible intervals for a risk assessment; to model a single day’s data from the agricultural dataset which satisfactorily captured the complexities of the data; to build a model for several days’ data, in order to consider how the full data might be modelled; and finally to build a model for the full four dimensional dataset and to consider the timevarying nature of the contrast of interest, having satisfactorily accounted for possible spatial and temporal autocorrelations. This work forms five papers, two of which have been published, with two submitted, and the final paper still in draft. The first two objectives were met by recasting the risk assessments as directed, acyclic graphs (DAGs). In the first case, we elicited uncertainty for the conditional probabilities needed by the Bayesian net, incorporated these into a corresponding DAG, and used Markov chain Monte Carlo (MCMC) to find credible intervals, for all the scenarios and outcomes of interest. In the second case, we incorporated the experimental data underlying the risk assessment constants into the DAG, and also treated some of that data as needing to be modelled as an ‘errors-invariables’ problem [Fuller, 1987]. This illustrated a simple method for the incorporation of experimental error into risk assessments. In considering one day of the three-dimensional agricultural data, it became clear that geostatistical models or conditional autoregressive (CAR) models over the three dimensions were not the best way to approach the data. Instead CAR models are used with neighbours only in the same depth layer. This gave flexibility to the model, allowing both the spatially structured and non-structured variances to differ at all depths. We call this model the CAR layered model. Given the experimental design, the fixed part of the model could have been modelled as a set of means by treatment and by depth, but doing so allows little insight into how the treatment effects vary with depth. Hence, a number of essentially non-parametric approaches were taken to see the effects of depth on treatment, with the model of choice incorporating an errors-in-variables approach for depth in addition to a non-parametric smooth. The statistical contribution here was the introduction of the CAR layered model, the applied contribution the analysis of moisture over depth and estimation of the contrast of interest together with its credible intervals. These models were fitted using WinBUGS [Lunn et al., 2000]. The work in the fifth paper deals with the fact that with large datasets, the use of WinBUGS becomes more problematic because of its highly correlated term by term updating. In this work, we introduce a Gibbs sampler with block updating for the CAR layered model. The Gibbs sampler was implemented by Chris Strickland using pyMCMC [Strickland, 2010]. This framework is then used to consider five days data, and we show that moisture in the soil for all the various treatments reaches levels particular to each treatment at a depth of 200 cm and thereafter stays constant, albeit with increasing variances with depth. In an analysis across three spatial dimensions and across time, there are many interactions of time and the spatial dimensions to be considered. Hence, we chose to use a daily model and to repeat the analysis at all time points, effectively creating an interaction model of time by the daily model. Such an approach allows great flexibility. However, this approach does not allow insight into the way in which the parameter of interest varies over time. Hence, a two-stage approach was also used, with estimates from the first-stage being analysed as a set of time series. We see this spatio-temporal interaction model as being a useful approach to data measured across three spatial dimensions and time, since it does not assume additivity of the random spatial or temporal effects.
Resumo:
Despite promising benefits and advantages, there are reports of failures and low realisation of benefits in Enterprise System (ES) initiatives. Among the research on the factors that influence ES success, there is a dearth of studies on the knowledge implications of multiple end-user groups using the same ES application. An ES facilitates the work of several user groups, ranging from strategic management, management, to operational staff, all using the same system for multiple objectives. Given the fundamental characteristics of ES – integration of modules, business process views, and aspects of information transparency – it is necessary that all frequent end-users share a reasonable amount of common knowledge and integrate their knowledge to yield new knowledge. Recent literature on ES implementation highlights the importance of Knowledge Integration (KI) for implementation success. Unfortunately, the importance of KI is often overlooked and little about the role of KI in ES success is known. Many organisations do not achieve the potential benefits from their ES investment because they do not consider the need or their ability to integrate their employees’ knowledge. This study is designed to improve our understanding of the influence of KI among ES end-users on operational ES success. The three objectives of the study are: (I) to identify and validate the antecedents of KI effectiveness, (II) to investigate the impact of KI effectiveness on the goodness of individuals’ ES-knowledge base, and (III) to examine the impact of the goodness of individuals’ ES-knowledge base on the operational ES success. For this purpose, we employ the KI factors identified by Grant (1996) and an IS-impact measurement model from the work of Gable et al. (2008) to examine ES success. The study derives its findings from data gathered from six Malaysian companies in order to obtain the three-fold goal of this thesis as outlined above. The relationships between the antecedents of KI effectiveness and its consequences are tested using 188 responses to a survey representing the views of management and operational employment cohorts. Using statistical methods, we confirm three antecedents of KI effectiveness and the consequences of the antecedents on ES success are validated. The findings demonstrate a statistically positive impact of KI effectiveness of ES success, with KI effectiveness contributing to almost one-third of ES success. This research makes a number of contributions to the understanding of the influence of KI on ES success. First, based on the empirical work using a complete nomological net model, the role of KI effectiveness on ES success is evidenced. Second, the model provides a theoretical lens for a more comprehensive understanding of the impact of KI on the level of ES success. Third, restructuring the dimensions of the knowledge-based theory to fit the context of ES extends its applicability and generalisability to contemporary Information Systems. Fourth, the study develops and validates measures for the antecedents of KI effectiveness. Fifth, the study demonstrates the statistically significant positive influence of the goodness of KI on ES success. From a practical viewpoint, this study emphasises the importance of KI effectiveness as a direct antecedent of ES success. Practical lessons can be drawn from the work done in this study to empirically identify the critical factors among the antecedents of KI effectiveness that should be given attention.
Resumo:
In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.
Resumo:
Purpose. To create a binocular statistical eye model based on previously measured ocular biometric data. Methods. Thirty-nine parameters were determined for a group of 127 healthy subjects (37 male, 90 female; 96.8% Caucasian) with an average age of 39.9 ± 12.2 years and spherical equivalent refraction of −0.98 ± 1.77 D. These parameters described the biometry of both eyes and the subjects' age. Missing parameters were complemented by data from a previously published study. After confirmation of the Gaussian shape of their distributions, these parameters were used to calculate their mean and covariance matrices. These matrices were then used to calculate a multivariate Gaussian distribution. From this, an amount of random biometric data could be generated, which were then randomly selected to create a realistic population of random eyes. Results. All parameters had Gaussian distributions, with the exception of the parameters that describe total refraction (i.e., three parameters per eye). After these non-Gaussian parameters were omitted from the model, the generated data were found to be statistically indistinguishable from the original data for the remaining 33 parameters (TOST [two one-sided t tests]; P < 0.01). Parameters derived from the generated data were also significantly indistinguishable from those calculated with the original data (P > 0.05). The only exception to this was the lens refractive index, for which the generated data had a significantly larger SD. Conclusions. A statistical eye model can describe the biometric variations found in a population and is a useful addition to the classic eye models.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
This report provides an overview of findings of qualitative research comprising three case studies undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. These case studies (see Parts 2, 3 and 4 of this suite of reports) were undertaken to illustrate the nature of past R&D investments in Australia. This was done to complement: (i) the audit and analysis of past R&D investment undertaken by Thomas Barlow (2011); and (ii) the Construction 2030 roadmap being developed by Swinburne University of Technology and Professor Göran Roos from VTT Technical Research Centre of Finland. These documents will be the basis for the final phase of the present project - developing policy guidelines for future R&D investment in the Australian built environment. Refer also Parts 1, 2 and 3 for detail findings.