931 resultados para stars: massive
Resumo:
We present high-resolution spectroscopic observations of 21 B- type stars, selected from the Edinburgh-Cape Blue Object Survey. Model atmosphere analyses confirm that 14 of these stars are young, main-sequence B-type objects with Population I chemical compositions. The remaining seven are found to be evolved objects, including subdwarfs, horizontal branch and post-AGB objects. A kinematical analysis shows that all 14 young main-sequence stars could have formed in the disc and subsequently been ejected into the halo. These results are combined with the analysis of a previous subsample of stars taken from the Survey. Of the complete sample, 31 have been found to be young, main-sequence objects, with formation in the disc, and subsequent ejection into the halo, again being found to be a plausible scenario.
Resumo:
19 B-type stars, selected from the Palomar-Green Survey, have been observed at infrared wavelengths to search for possible infrared excesses, as part of an ongoing programme to investigate the nature of early-type stars at high Galactic latitudes. The resulting infrared fluxes, along with Stromgren photometry, are compared with theoretical flux profiles to determine whether any of the targets show evidence of circumstellar material, which may be indicative of post-main- sequence evolution. Eighteen of the targets have flux distributions in good agreement with theoretical predictions. However, one star, PG 2120 + 062, shows a small near-infrared excess, which may be due either to a cool companion of spectral type F5-F7, or to circumstellar material, indicating that it may be an evolved object such as a post-asymptotic giant branch star, in the transition region between the asymptotic giant branch and planetary nebula phase, with the infrared excess due to recent mass loss during giant branch evolution.
Resumo:
We present model atmosphere analyses of high resolution Keck and VLT optical spectra for three evolved stars in globular clusters, viz. ZNG-1 in M 10, ZNG-1 in M 15 and ZNG-1 in NGC 6712. The derived atmospheric parameters and chemical compositions confirm the programme stars to be in the post- Asymptotic Giant Branch (post-AGB) evolutionary phase. Differential abundance analyses reveal CNO abundance patterns in M 10 ZNG-1, and possibly M 15 ZNG-1, which Suggest that both objects may have evolved off the AGB before the third dredge-up occurred. The abundance pattern of these stars is similar to the third class of optically, bright post-AGB objects discussed by van Winckel (1997). Furthermore, M 10 ZNG-1 exhibits a large C underabundance (with Delta[C/O] similar to -1.6 dex), typical of other hot post-AGB objects. Differential Delta[alpha/Fe] abundance ratios in both M 10 ZNG-1 and NGC 6712 ZNG-1 are found to be approximately 0.0 dex, with the Fe abundance of the former being in disagreement with the cluster metallicity of M 10. Given that the Fe absorption features in both M 10 ZNG-1 and NGC6712 ZNG-1 are well observed and reliably modelled, we believe that these differential Fe abundance estimates to be secure. However, our Fe abundance is difficult to explain in terms of previous evolutionary processes that Occur oil both the Horizontal Branch and the AGB.
Resumo:
High-resolution, high signal-to-noise spectral data are presented for four young B-type stars lying towards the Galactic Centre. Determination of their atmospheric parameters from their absorption line profiles, and uvby photometric measurement of the continua indicate that they are massive objects lying slightly out of the plane, and were probably born in the disk between 2.5-5 kpc from the Centre. We have carried out a detailed absolute and differential line-by-line abundance analyses of the four stars compared to two stars with very similar atmospheric parameters in the solar neighbourhood. The stars appear to be rich in all the well sampled chemical elements (C, N, Si, Mg, S, Al), except for oxygen. Oxygen abundances derived in the atmospheres of these four stars are very similar to that in the solar neighbourhood. If the photospheric composition of these young stars is reflective of the gaseous ISM in the inner Galaxy, then the values derived for the enhanced metals are in excellent agreement with the extrapolation of the Galactic abundance gradients previously derived by Rolleston et al. (2000) and others. However, the data for oxygen suggests that the inner Galaxy may not be richer than normal in this element, and the physical reasons for such a scenario are unclear.
Resumo:
Boron abundances have been derived for seven main-sequence B- type stars from Hubble Space Telescope STIS spectra around the B III lambda2066 line. In two stars, boron appears to be undepleted with respect to the presumed initial abundance. In one star, boron is detectable but is clearly depleted. In the other four stars, boron is undetectable, implying depletions of 1-2 dex. Three of these four stars are nitrogen enriched, but the fourth shows no enrichment of nitrogen. Only rotationally induced mixing predicts that boron depletions are unaccompanied by nitrogen enrichments. The inferred rate of boron depletion from our observations is in good agreement with these predictions. Other boron-depleted nitrogen-normal stars are identified from the literature. In addition, several boron- depleted nitrogen-rich stars are identified, and while all fall on the boron-nitrogen trend predicted by rotationally induced mixing, a majority have nitrogen enrichments that are not uniquely explained by rotation. The spectra have also been used to determine iron group (Cr, Mn, Fe, and Ni) abundances. The seven B-type stars have near-solar iron group abundances, as expected for young stars in the solar neighborhood. We have also analyzed the halo B-type star PG 0832 + 676. We find [Fe/H] = -0.88 +/- 0.10, and the absence of the B III line gives the upper limit [B/H] <-2.5. These and other published abundances are used to infer the star's evolutionary status as a post-asymptotic giant branch star.
Resumo:
We present FUV and UV spectroscopic observations of AD Leonis, with the aim of investigating opacity effects in the transition regions of late-type stars. The C III lines in FUSE spectra show significant opacity during both the quiescent and flaring states of AD Leonis, with up to 30% of the expected flux being lost during the latter. Other FUSE emission lines tested for opacity include those of O VI, while C IV, Si IV and N V transitions observed with STIS are also investigated. These lines only reveal modest amounts of opacity with losses during flaring of up to 20%. Optical depths have been calculated for homogeneous and inhomogeneous geometries, giving path lengths of approximate to 20 - 60 km and approximate to 10 - 30 km, respectively, under quiescent conditions. However path lengths derived during flaring are approximate to 2 - 3 times larger. These values are in excellent agreement with both estimates of the small-scale structure observed in the solar transition region, and path lengths derived previously for several other active late-type stars.
Resumo:
We present an analysis of interstellar NaI (lambda(air) = 3302.37 and 3302.98 angstrom), TiII (lambda(air) = 3383.76 angstrom) and CaII K (lambda(air) = 3933.66 angstrom) absorption features for 74 sightlines towards O- and B-type stars in the Galactic disc. The data were obtained from the Ultraviolet and Visual Echelle Spectrograph Paranal Observatory Project, at a spectral resolution of 3.75 km s(-1) and with mean signal-to-noise ratios per pixel of 260, 300 and 430 for the NaI, TiII and CaII observations, respectively. Interstellar features were detected in all but one of the TiII sightlines and all of the CaII sightlines. The dependence of the column density of these three species with distance, height relative to the Galactic plane, HI column density, reddening and depletion relative to the solar abundance has been investigated. We also examine the accuracy of using the NaI column density as an indicator of that for HI. In general, we find similar strong correlations for both Ti and Ca, and weaker correlations for Na. Our results confirm the general belief that Ti and Ca occur in the same regions of the interstellar medium ( ISM) and also that the TiII/CaII ratio is constant over all parameters. We hence conclude that the absorption properties of Ti and Ca are essentially constant under the general ISM conditions of the Galactic disc.
Resumo:
We present Ca II K (lambda(air) = 3933.661 angstrom) interstellar observations towards 20 early-type stars, to place lower distance limits to intermediate- and high-velocity clouds (IHVCs) in their lines of sight. The spectra are also employed to estimate the Ca abundance in the low-velocity gas towards these objects, when combined with Leiden-Dwingeloo 21-cm HI survey data of spatial resolution 0 degrees.5. Nine of the stars, which lie towards IHVC complexes H, K and gp, were observed with the intermediate dispersion spectrograph on the Isaac Newton Telescope at a resolution R = lambda/Delta lambda of 9000 (similar to 33 km s(-1)) and signal-to-noise ratio (S/N) per pixel of 75-140. A further nine objects were observed with the Utrecht Echelle Spectrograph on the William Herschel Telescope at R = 40 000 (similar to 7.5 km s(-1)) and S/N per pixel of 10-25. Finally, two objects were observed in both Ca II K and Na I D lines using the 2D COUDE on the McDonald 2.7-m telescope at R = 35 000 (similar to 8.5 km s(-1)). The abundance of Ca II K {log(10)(A) = log(10)[N(Ca II K)]-log(10)[N(HI)]} plotted against HI column density for the objects in the current sample with heights above the Galactic plane (z) exceeding 1000 pc is found to obey the Wakker & Mathis (2000) relation. Also, the reduced column density of Ca II K as function of z is consistent with the larger sample taken from Smoker et al. (2003). Higher S/N observations than those previously taken towards HVC complex H stars HD 13256 and HILT 190 reinforce the assertion that this lies at a distance exceeding 4000 pc. No obvious absorption is detected in observations of ALS 10407 and HD 357657 towards IVC complex gp. The latter star has a spectroscopically estimated distance of similar to 2040 pc, although this was derived assuming the star lies on the main sequence and without any reddening correction being applied. Finally, no Ca II K absorption is detected towards two stars along the line of sight to complex K, namely PG 1610+529 and PG 1710+490. The latter is at a distance of similar to 700 pc, hence placing a lower distance limit to this complex, where previously only an upper distance limit of 6800 pc was available.
Resumo:
High resolution spectra of seven early B-type giant/supergiant stars in the SMC cluster NGC330 are analysed to obtain their chemical compositions relative to SMC field and Galactic B-type stars. It is found that all seven stars are nitrogen rich with an abundance approximately 1.3 dex higher than an SMC main- sequence field B-type star, AV304. They also display evidence for deficiencies in carbon, but other metals have abundances typical of the SMC. Given the number of B-type stars with low projected rotational velocities in NGC330 (all our targets have v sin i <50 km s(-1)), we suggest that it is unlikely that the stars in our sample are seen almost pole-on, but rather that they are intrinsically slow rotators. Furthermore, none of our objects displays any evidence of significant Balmer emission excluding the possibility that these are Be stars observed pole-on. Comparing these results with the predictions of stellar evolution models including the effects of rotationally induced mixing, we conclude that while the abundance patterns may indeed be reproduced by these models, serious discrepancies exist. Most importantly, models including the effects of initially large rotational velocities do not reproduce the observed range of effective temperatures of our sample, nor the currently observed rotational velocities. Binary models may be able to produce stars in the observed temperature range but again may be incapable of producing suitable analogues with low rotational velocities. We also discuss the clear need for stellar evolution calculations employing the correct chemical mix of carbon, nitrogen and oxygen for the SMC.
Resumo:
Absolute and differential chemical abundances are presented for the largest group of massive stars in M31 studied to date. These results were derived from intermediate resolution spectra of seven B-type supergiants, lying within four OB associations covering a galactocentric distance of 5-12 kpc. The results are mainly based on an LTE analysis, and we additionally present a full non-LTE, unified model atmosphere analysis of one star (OB 78-277) to demonstrate the reliability of the differential LTE technique. A comparison of the stellar oxygen abundance with that of previous nebular results shows that there is an off set of between similar to0.15-0.4 dex between the two methods which is critically dependent on the empirical calibration adopted for the R 23 parameter with [O/H]. However within the typical errors of the stellar and nebular analyses (and given the strength of dependence of the nebular results on the calibration used) the oxygen abundances determined in each method are fairly consistent. We determine the radial oxygen abundance gradient from these stars, and do not detect any systematic gradient across this galactocentric range. We find that the inner regions of M31 are not, as previously thought, very "metal rich". Our abundances of C, N, O, Mg, Si, Al, S and Fe in the M31 supergiants are very similar to those of massive stars in the solar neighbourhood.
Resumo:
We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between 2 × 104 and 1.5 × 105 yr. We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.
Resumo:
We present Strömgren uvby photometry for a sample of 31 high Galactic latitude stars selected from the Palomar-Green Survey. The data include photometric magnitudes accurate to
Resumo:
High-resolution optical and ultraviolet (UV) spectra of two B-type post-asymptotic giant branch (post-AGB) stars in globular clusters, Barnard29 in M13 and ROA5701 in ?Cen, have been analysed using model atmosphere techniques. The optical spectra have been obtained with FEROS on the ESO 2.2-m telescope and the 2d-Coudé spectrograph on the 2.7-m McDonald telescope, while the UV observations are from the Goddard high-resolution spectrograph on the Hubble Space Telescope (HST). Abundances of light elements (C, N, O, Mg, Al and S) plus Fe have been determined from the optical spectra, while the UV data provide additional Fe abundance estimates from FeIII absorption lines in the 1875-1900 Å wavelength region. A general metal underabundance relative to young B-type stars is found for both Barnard29 and ROA5701. These results are consistent with the metallicities of the respective clusters, as well as with previous studies of the objects. The derived abundance patterns suggest that the stars have not undergone a gas-dust separation, contrary to previous suggestions, although they may have evolved from the AGB before the onset of the third dredge-up. However, the Fe abundances derived from the HST spectra are lower than those expected from the metallicities of the respective clusters, by 0.5 dex for Barnard29 and 0.8 dex for ROA5701. A similar systematic underabundance is also found for other B-type stars in environments of known metallicity, such as the Magellanic Clouds. These results indicate that the FeIII UV lines may yield abundance values which are systematically too low by typically 0.6 dex and hence such estimates should be treated with caution.
Resumo:
We present Ca it K and Ti it optical spectra of early-type stars taken mainly from the ultraviolet and visual echelle spectrograph (LIVES) Paranal Observatory Project, plus H 1 21-cm spectra, from the Vila-Elisa and Leiden-Dwingeloo Surveys, which are employed to obtain distances to intermediate- and high-velocity clouds (IHVCs). H I emission at a velocity of -117 km s(-1) towards the sightline HD 30677 (l, b = 190 degrees.2, -22 degrees.2) with column density -1.7 x 10(19) cm(-2) has no corresponding Ca Pi K absorption in the LIVES spectrum, which has a signal-to-noise ratio (S/N) of 610 per resolution element. The star has a spectroscopically determined distance of 2.7 kpc, and hence sets this as a firm lower distance limit towards Anti-Centre cloud ACII. Towards another sightline (HD 46185 with 1, b = 222 0, -10 degrees.1), H1 at a velocity of +122 km s(-1) and column density of 1.2 x 10(19) cm(-2) is seen. The corresponding Ca Pi K spectrum has a S/N of 780, although no absorption is observed at the cloud velocity. This similarly places a firm lower distance limit of 2.9 kpc towards this parcel of gas that may be an intermediate-velocity (IV) cloud. The lack of IV Ca it absorption towards HD 196426 (1, b = 45 degrees.8, -23 degrees.3) at a S/N of 500 reinforces a lower distance limit of -700 pc towards this part of complex gp, where the H I column density is 1.1 x 1019 cm(-2) and velocity is +78 km s(-1). Additionally, no IV Cart is seen in absorption in the spectrum of HD 19445, which is strong in H I with a column density of 8 x 10(19) cm(-2) at a velocity of - -42 km s(-1), placing a firm although uninteresting lower distance limit of 39 pc to this part of IV South. Finally, no high-velocity Call K absorption is seen towards HD 115363 (l, b = 306.0,-1.0) at a S/N of 410, placing a lower distance of -3.2 kpc towards the HVC gas at velocity of - +224 km s(-1) and WE column density of 5.2 x 10(19) cm(-2). This gas is in the same region of the sky as complex WE (Wakker 2001), but at higher velocities. The non-detection of Ca it K absorption sets a lower distance of -3.2 kpc towards the HVC, which is unsurprising if this feature is indeed related to the Magellanic System.