183 resultados para spermatids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple isoforms of type 1 hexokinase (HK1) are transcribed during spermatogenesis in the mouse, including at least three that are presumably germ cell specific: HK1-sa, HK1-sb, and HK1-sc. Each of these predicted proteins contains a common, germ cell-specific sequence that replaces the porin-binding domain found in somatic HK1. Although HK1 protein is present in mature sperm and is tyrosine phosphorylated, it is not known whether the various potential isoforms are differentially translated and localized within the developing germ cells and mature sperm. Using antipeptide antisera against unique regions of HK1-sa and HK1-sb, it was demonstrated that these isoforms were not found in pachytene spermatocytes, round spermatids, condensing spermatids, or sperm, suggesting that HK1-sa and HK1-sb are not translated during spermatogenesis. Immunoreactivity was detected in protein from round spermatids, condensing spermatids, and mature sperm using an antipeptide antiserum against the common, germ cell-specific region, suggesting that HK1-sc was the only germ cell-specific isoform present in these cells. Two-dimensional SDS-PAGE suggested that all of the sperm HK1-sc was tyrosine phosphorylated, and that the somatic HK1 isoform was not present. Immunoelectron microscopy revealed that HK1-sc was associated with the mitochondria and with the fibrous sheath of the flagellum and was found in discrete clusters in the region of the membranes of the sperm head. The unusual distribution of HK1-sc in sperm suggests novel functions, such as extramitochondrial energy production, and also demonstrates that a hexokinase without a classical porin-binding domain can localize to mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified partial loss of function mutations in class VI unconventional myosin, 95F myosin, which results in male sterility. During spermatogenesis the germ line precursor cells undergo mitosis and meiosis to form a bundle of 64 spermatids. The spermatids remain interconnected by cytoplasmic bridges until individualization. The process of individualization involves the formation of a complex of cytoskeletal proteins and membrane, the individualization complex (IC), around the spermatid nuclei. This complex traverses the length of each spermatid resolving the shared membrane into a single membrane enclosing each spermatid. We have determined that 95F myosin is a component of the IC whose function is essential for individualization. In wild-type testes, 95F myosin localizes to the leading edge of the IC. Two independent mutations in 95F myosin reduce the amount of 95F myosin in only a subset of tissues, including the testes. This reduction of 95F myosin causes male sterility as a result of defects in spermatid individualization. Germ line transformation with the 95F myosin heavy chain cDNA rescues the male sterility phenotype. IC movement is aberrant in these 95F myosin mutants, indicating a critical role for 95F myosin in IC movement. This report is the first identification of a component of the IC other than actin. We propose that 95F myosin is a motor that participates in membrane reorganization during individualization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germ-line mutation induction at mouse minisatellite loci by acute irradiation with x-rays was studied at premeiotic and postmeiotic stages of spermatogenesis. An elevated paternal mutation rate was found after irradiation of premeiotic spermatogonia and stem cells, whereas the frequency of minisatellite mutation after postmeiotic irradiation of spermatids was similar to that in control litters. In contrast, paternal irradiation did not affect the maternal mutation rate. A linear dose–response curve for paternal mutation induced at premeiotic stages was found, with a doubling dose of 0.33 Gy, a value close to those obtained in mice after acute spermatogonia irradiation using other systems for mutation detection. High frequencies of spontaneous and induced mutations at minisatellite loci allow mutation induction to be evaluated at low doses of exposure in very small population samples, which currently makes minisatellite DNA the most powerful tool for monitoring radiation-induced germ-line mutation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, little is known regarding the expression of these pathways in germ cells. To address this basic question, we have studied NER in rat spermatogenic cells in crude cell suspension, in enriched cell stages and within seminiferous tubules after exposure to UV or N-acetoxy-2-acetylaminofluorene. Surprisingly, repair in spermatogenic cells was inefficient in the genome overall and in transcriptionally active genes indicating non-functional GGR and TCR. In contrast, extracts from early/mid pachytene cells displayed dual incision activity in vitro as high as extracts from somatic cells, demonstrating that the proteins involved in incision are present and functional in premeiotic cells. However, incision activities of extracts from diplotene cells and round spermatids were low, indicating a stage-dependent expression of incision activity. We hypothesize that sequestering of NER proteins by mispaired regions in DNA involved in synapsis and recombination may underlie the lack of NER activity in premeiotic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of germ cell DNA is critical for the fate of the offspring, yet there is limited knowledge of the DNA repair capabilities of such cells. One of the main DNA repair pathways is base excision repair (BER) which is initiated by DNA glycosylases that excise damaged bases, followed by incision of the generated abasic (AP) sites. We have studied human and rat methylpurine-DNA glycosylase (MPG), uracil-DNA glycosylase (UNG), and the major AP endonuclease (HAP1/APEX) in male germ cells. Enzymatic activities and western analyses indicate that these enzymes are present in human and rat male germ cells in amounts that are at least as high as in somatic cells. Minor differences were observed between different cellular stages of rat spermatogenesis and spermiogenesis. Repair of methylated DNA was also studied at the cellular level using the Comet assay. The repair was highly efficient in both human and rat male germ cells, in primary spermatocytes as well as round spermatids, compared to rat mononuclear blood cells or hepatocytes. This efficient BER removes frequently occurring DNA lesions that arise spontaneously or via environmental agents, thereby minimising the number of potential mutations transferred to the next generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tc1/mariner elements are able to transpose in species other than the host from which they were isolated. As potential vectors for insertional mutagenesis and transgenesis of the mouse, these cut-and-paste transposons were tested for their ability to transpose in the mouse germ line. First, the levels of activity of several Tc1/mariner elements in mammalian cells were compared; the reconstructed fish transposon Sleeping Beauty (SB) was found to be an order of magnitude more efficient than the other tested transposons. SB then was introduced into the mouse germ line as a two-component system: one transgene for the expression of the transposase in the male germ line and a second transgene carrying a modified transposon. In 20% of the progeny of double transgenic male mice the transposon had jumped from the original chromosomal position into another locus. Analysis of the integration sites shows that these jumps indeed occurred through the action of SB transposase, and that SB has a strong preference for intrachromosomal transposition. Analysis of the excision sites suggests that double-strand breaks in haploid spermatids are repaired via nonhomologous end joining. The SB system may be a powerful tool for transposon mutagenesis of the mouse germ line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In testis mRNA stability and translation initiation are extensively under the control of poly(A)-binding proteins (PABP). Here we have cloned a new human testis-specific PABP (PABP3) of 631 amino acids (70.1 kDa) with 92.5% identical residues to the ubiquitous PABP1. A northern blot of multiple human tissues hybridised with PABP3- and PABP1-specific oligonucleotide probes revealed two PABP3 mRNAs (2.1 and 2.5 kb) detected only in testis, whereas PABP1 mRNA (3.2 kb) was present in all tested tissues. In human adult testis, PABP3 mRNA expression was restricted to round spermatids, whereas PABP1 was expressed in these cells as well as in pachytene spermatocytes. PABP3-specific antibodies identified a protein of 70 kDa in human testis extracts. This protein binds poly(A) with a slightly lower affinity as compared to PABP1. The human PABP3 gene is intronless with a transcription start site 61 nt upstream from the initiation codon. A sequence of 256 bp upstream from the transcription start site drives the promoter activity of PABP3 and its tissue-specific expression. The expression of PABP3 might be a way to bypass PABP1 translational repression and to produce the amount of PABP needed for active mRNA translation in spermatids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholesterol transport is an essential process in all multicellular organisms. In this study we applied two recently developed approaches to investigate the distribution and molecular mechanisms of cholesterol transport in Caenorhabditis elegans. The distribution of cholesterol in living worms was studied by imaging its fluorescent analog, dehydroergosterol, which we applied to the animals by feeding. Dehydroergosterol accumulates primarily in the pharynx, nerve ring, excretory gland cell, and gut of L1–L3 larvae. Later, the bulk of dehydroergosterol accumulates in oocytes and spermatozoa. Males display exceptionally strong labeling of spermatids, which suggests a possible role for cholesterol in sperm development. In a complementary approach, we used a photoactivatable cholesterol analog to identify cholesterol-binding proteins in C. elegans. Three major and several minor proteins were found specifically cross-linked to photocholesterol after UV irradiation. The major proteins were identified as vitellogenins. rme-2 mutants, which lack the vitellogenin receptor, fail to accumulate dehydroergosterol in oocytes and embryos and instead accumulate dehydroergosterol in the body cavity along with vitellogenin. Thus, uptake of cholesterol by C. elegans oocytes occurs via an endocytotic pathway involving yolk proteins. The pathway is a likely evolutionary ancestor of mammalian cholesterol transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to the five 70-kDa heat shock proteins (HSP70) common to germ cells and somatic tissues of mammals, spermatogenic cells synthesize HSP70-2 during meiosis. To determine if this unique stress protein has a critical role in meiosis, we used gene-targeting techniques to disrupt Hsp70-2 in mice. Male mice homozygous for the mutant allele (Hsp70-2 -/-) did not synthesize HSP70-2, lacked postmeiotic spermatids and mature sperm, and were infertile. However, neither meiosis nor fertility was affected in female Hsp70-2 -/- mice. We previously found that HSP70-2 is associated with synaptonemal complexes in the nucleus of meiotic spermatocytes from mice and hamsters. While synaptonemal complexes assembled in Hsp70-2 -/- spermatocytes, structural abnormalities became apparent in these cells by late prophase, and development rarely progressed to the meiotic divisions. Furthermore, analysis of nuclei and genomic DNA indicated that the failure of meiosis in Hsp70-2 -/- mice was coincident with a dramatic increase in spermatocyte apoptosis. These results suggest that HSP70-2 participates in synaptonemal complex function during meiosis in male germ cells and is linked to mechanisms that inhibit apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translational control is a major form of regulating gene expression during gametogenesis and early development in many organisms. We sought to determine whether the translational repression of the protamine 1 (Prm1) mRNA is necessary for normal spermatid differentiation in mice. To accomplish this we generated transgenic animals that carry a Prm1 transgene lacking its normal 3' untranslated region. Premature translation of Prm1 mRNA caused precocious condensation of spermatid nuclear DNA, abnormal head morphogenesis, and incomplete processing of Prm2 protein. Premature accumulation of Prm1 within syncytial spermatids in mice hemizygous for the transgene caused dominant male sterility, which in some cases was accompanied by a complete arrest in spermatid differentiation. These results demonstrate that correct temporal synthesis of Prm1 is necessary for the transition from nucleohistones to nucleoprotamines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and spermatids. We report on a young adult female patient who has PDC deficiency associated with a compound heterozygosity in PDHX encoding the E3-binding protein. Additionally, in the patient and in all members of her immediate family, a full-length testis-specific PDHA2 mRNA and a 5′UTR-truncated PDHA1 mRNA were detected in circulating lymphocytes and cultured fibroblasts, being bothmRNAs translated into full-length PDHA2 and PDHA1 proteins, resulting in the co-existence of both PDHA isoforms in somatic cells.Moreover, we observed that DNA hypomethylation of a CpG island in the coding region of PDHA2 gene is associatedwith the somatic activation of this gene transcription in these individuals. This study represents the first natural model of the de-repression of the testis-specific PDHA2 gene in human somatic cells, and raises some questions related to the somatic activation of this gene as a potential therapeutic approach for most forms of PDC deficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El lenguado de California Paralichthys californicus es una especie con alto valor comercial debido a su gran tamaño y calidad de su carne. Esta especie presenta dimorfismo sexual en el crecimiento donde las hembras crecen más rápido que los machos, por lo tanto el cultivo monosexual de hembras resulta favorable para la producción. En el presente estudio se registró el proceso de diferenciación sexual mediante cortes histológicos de las larvas y gónadas del lenguado de California asimismo se probó el efecto de diferentes concentraciones de 17β-estradiol (E2) (2.5, 5 y 10 mg/kg) a través de la dieta para incrementar la proporción de hembras en el cultivo. A los 25 días después de la eclosión (DDE) se observó el primordio gonadal en ejemplares con una longitud total promedio de 6.96 ± 0.92 mm, hasta el día 75 DDE (37.58 ± 6.58 mm) se observó una gónada indiferenciada evidenciada por la presencia de células germinales primordiales. La primera evidencia de diferenciación se registró a los 115 DDE (55.93 ± 14.67 mm) donde se observó la cavidad ovárica y posteriormente a los 180 DDE (115.70 ± 17.02 mm) se evidencian ovarios con ovocitos en crecimiento y testículos con espermátidas. Por lo tanto, el periodo lábil para la diferenciación sexual se encuentra entre los días 75 y 115 después de la eclosión. Por otro lado, el suministro de E2 a través de la dieta a concentraciones de 2.5, 5 y 10 mg/kg incrementó el porcentaje de hembras de 26.67% (control, no adición de E2) a un 100% en todos los tratamientos. Se encontraron diferencias en la proporción de los tipos celulares (ovogonias, ovocitos primarios en fase I y II) entre el control y los tratamientos mientras que no se registraron alteraciones histológicas como atrofia gonadal en ninguno de los casos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to compare testis characteristics of Zebu bulls treated with the GnRH agonist, deslorelin, at different times and for different durations during their development. An additional objective was to determine the usefulness of a stain for the transcription factor GATA-binding protein 4 (GATA-4) as a specific marker for Sertoli cell nuclei in cattle. Bulls (54) were allocated to nine groups (n = 6) and received s.c. deslorelin implants as follows: G1 = from birth to 3 mo of age; G2 = from 3 to 6 mo; G3 = from 6 to 9 mo; G4 = from 9 to 12 mo; G5 = from birth to 15 mo; G6 = from 3 to 15 mo; G7 = from 6 to 15 mo; G8 = from 12 to 15 mo; and G9 (control) = no implant. Bulls were castrated at 19 mo of age. Paraffin sections (10 mu m) were subjected to quantitative morphometry and GATA-4 immunohistochemistry. At castration, all bulls in the control group (6/6) had attained puberty (scrotal circumference ! 28 cm), whereas a smaller proportion (P < 0.05) had reached puberty in G2 (2/5) and G6 (1/ 6). Bulls in G2 and G6 also had a lesser (P < 0.05) testis weight compared with the control group. Total volume of seminiferous epithelium and total daily sperm production in G2 and G6 were only half that observed in the control group. Spermatids were observed in less than 50% of seminiferous tubules in G2, G6, and G7 compared with 82% in the control group (P < 0.05). Staining for GATA-4 was specific for and abundant in the Sertoli cell nucleus in both pre- and postpubertal bulls, and no other cell nucleus inside the seminiferous tubule was positive for GATA-4. Total number of Sertoli cells was not affected by treatment (P = 0.45), but nuclear volume was smaller in G2 and G6 (P < 0.05) compared with the control group. In conclusion, treatment of Zebu bulls with deslorelin had no apparent beneficial effect on testis development and delayed puberty when treatment was initiated at 3 mo of age. Staining for GATA-4 was a useful method for identifying and quantifying Sertoli cell nuclei in both pre- and postpubertal bulls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé: Les cellules germinales mâles remodèlent leur chromatine pour compacter leur noyau afin de protéger leur matériel génétique et assurer un transit optimal vers le gamète femelle. Il a été démontré que tous les spermatides de plusieurs mammifères, incluant l’homme et la souris, présentaient ce mécanisme de remodelage de la chromatine. Celui-ci est caractérisé par une augmentation transitoire de cassures d’ADN dont une quantité importante sont bicaténaires. Ce remodelage chromatinien a été étudié et semble être conservé chez plusieurs espèces, allant de l’algue à l’humain. Dans le contexte de la recherche fondamentale sur le phénomène de la spermiogenèse, il devient parfois très difficile d’investiguer certains aspects importants en vertu de l’impossibilité de réaliser des manipulations génétiques simples. Il est donc impératif de développer un nouveau modèle d’étude plus permissif afin de palier à ces difficultés encourues. Comme le processus de maturation des spores chez la levure à fission présente de grandes similitudes avec la spermiogenèse des mammifères, l’utilisation d’un modèle d’étude basé sur la sporulation de la levure à fission Schizosaccharomyces pombe a été proposée comme modèle comparatif de la spermatogenèse murine. À la suite de la synchronisation de la méiose de la souche S. pombe pat1-114, des analyses d’électrophorèse en champ pulsé (PFGE) et de qTUNEL ont permis de déterminer la présence de cassures bicaténaires transitoires de l’ADN lors de la maturation post-méiotique des ascospores nouvellement formés (t>7h). Des analyses par immunobuvardages dirigés contre le variant d’histones H2AS129p suggère la présence d’un remodelage chromatinien postméiotique dix heures suivant l’induction de la méiose, corroborant le modèle murin. Enfin, des analyses protéomiques couplées à l’analyse par spectrométrie de masse ont permis de proposer l’endonucléase Pnu1 comme candidat potentiellement responsable des cassures bicaténaires transitoires dans l’ADN des ascospores en maturation. En somme, bien que le processus de maturation des spores soit encore bien méconnu, quelques parallèles peuvent être tracés entre la maturation des ascospores de la levure à fission et la spermiogenèse des eucaryotes supérieurs. En identifiant un modèle simple du remodelage chromatinien au niveau de la spermiogenèse animale, on s’assurerait ainsi d’un outil beaucoup plus malléable et versatile pour l’étude fondamentale des événements survenant lors de la spermiogenèse humaine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The male gametophyte of the semi-aquatic fern, Marsilea vestita, produces multiciliated spermatozoids in a rapid developmental sequence that is controlled post-transcriptionally when dry microspores are placed in water. Development can be divided into two phases, mitosis and differentiation. During the mitotic phase, a series of nine successive division cycles produce 7 sterile cells and 32 spermatids in 4.5-5 hours. During the next 5-6 hours, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ~140 cilia. This document focuses on the role of motor proteins in the regulation of male gametophyte development and during ciliogenesis. In order to study the mechanisms that regulate spermatogenesis, RNAseq was used to generate a reference transcriptome that allowed us to assess the abundance of transcripts at different stages of development. Over 120 kinesin-like sequences were identified in the transcriptome that represent 56 unique kinesin transcripts. Members of the kinesin-2, -4, -5, -7, -8, -9, -12, -13, and -14 families, in addition to several plant specific and ‘orphan’ kinesins are present. Most (91%) of these kinesin transcripts change in abundance throughout gametophyte development, with 52% of kinesin mRNAs enriched during the mitotic phase and 39% enriched during differentiation. Functional analyses show that the temporal regulation of kinesin transcripts during gametogenesis directly correlates with kinesin protein function. Specifically, Marsilea makes one kinesin-2 (MvKinesin-2) and two kinesin-9 (MvKinesin-9A and MvKinesin-9B) transcripts, which are present during spermatid differentiation and ciliogenesis. Silencing experiments showed that MvKinesin-2 and MvKinesin-9A are required for ciliogenesis and motility in the Marsilea male gametophyte; however, these kinesins display atypical roles during these processes. In contrast, spermatozoids produced after the silencing of MvKinesin-9B exhibit normal morphology. MvKinesin-2 is necessary for cytokinesis as well as for regulating ciliary length and MvKinesin-9A is needed for the correct orientation of basal bodies, events not typically associated with these proteins. In addition, Marsilea makes motile, ciliated gametophytes without the help of IFT dynein, outer arm dynein, or the BBsome. These results are the first to investigate the kinesin-linked mechanisms that regulate ciliogenesis in a land plant.