992 resultados para self assembled monolayers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alternative method for seeding catalyst nanoparticles for carbon nanotubes and nanowires growth is presented. Ni nanoparticles are formed inside a 450 nm SiO2 film on (100) Si wafers through the implantation of Ni ions at fluences of 7.5×1015 and 1.7×1016 ions.cm-2 and post-annealing treatments at 700, 900 and 1100°C. After exposed to the surface by HF dip etching, the Ni nanoparticles are used as catalyst for the growth of vertically aligned carbon nanotubes by direct current plasma enhanced chemical vapor deposition. © 2007 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strong, artificial pinning centres are required in superconducting films of large thickness for power applications in high magnetic fields. One of the methods for the introduction of pinning centres in such films is substrate decoration, i.e., growing nanoscale islands of certain materials on the substrate prior to the deposition of the superconducting film. Two other methods are building up a layered distribution of a second phase and homogeneous incorporation of second phase inclusions from a compositional target. In this paper, we compare the effectiveness of these methods in terms of the type of the self-assembly of nanoparticles. The comparison is made over a large set of YBa2Cu3O7 films of thickness up to 6.6 μm deposited with Au, Ag, Pd, LaNiO3, PrBa2Cu 3O7, YBCO, BaZrO3 and Gd2Ba 4CuWOy nanoparticles. It is found that substrate-decoration self-assembly is able to provide higher critical current in low magnetic field than the incorporation of homogeneous second phase in the sample microstructure. By specific modification of substrate decoration we achieved the self-field critical current per centimetre of width of 896 A/cm at 77.3 K and 1620 A/cm at 65 K in a film of thickness of 4.8 μm. © 2010 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies show that carbon nanotubes (CNTs) can be used as temperature sensors, and offer great opportunities towards extreme miniaturization, high sensitivity, low power consumption, and rapid response. Previous CNT based temperature sensors are fabricated by either dielectrophoresis or piece-wise alignment of read-out electronics around randomly dispersed CNTs. We introduce a new deterministic and parallel microsensor fabrication method based on the self-assembly of CNTs into three-dimensional microbridges. We fabricated prototype microbridge sensors on patterned electrodes, and found their sensitivity to be better than -0.1 %/K at temperatures between 300K and 420K. This performance is comparable to previously published CNT based temperature sensors. Importantly, however, our research shows how unique sensor architectures can be made by self-assembly, which can be achieved using batch processing rather than piecewise assembly. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors report the optical characteristics of GaSb/InAs/GaAs self-assembled heterojunction quantum dots (QDs). With increasing GaSb deposition, the room temperature emission wavelength can be extended to 1.56 mu m. The photoluminescence mechanism is considered to be a type-II transition with electrons confined in InAs and holes in GaSb.(C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a quantum dot (QD) ensemble structure in which the in-plane arrangements of the dots are in a hexagonal way while the dots are also vertically aligned. Such a distinct lateral ordering of QDs is achieved on a planar GaAs(l 0 0) rather than on a prepatterned substrate by strain-mediated multilayer vertical stacking of the QDs. The analysis indicates that the strain energy of the lateral island-island interaction is minimum for arrangement of the hexagonal ordering. The ordered dots demonstrate strong photoluminescence (PL) emission at room temperature (RT) and the full width at half maximum of PL peak at RT is only 50 meV. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots were prepared on GaAS(100)) substrate in a solid source molecular beam epitaxy system The distribution and topographic images of uncapped dots were studied by atomic force microscope. The statistical result shows that the quantum dots are bimodal distribution. The photoluminescence spectrum results shows that the intensity of small size quantum dots dominated, which may be due to: (1) the state density of large quantum dots lower than that of small quantum dots; (2) the carriers capture rate of large size quantum dots is small relative to that of small ones; (3) there is a large strain barrier between large quantum dots and capping layer, and the large strain is likely to produce the defect and dislocation, resulting in a probability carriers transferring from large quantum dots to small dots that is very small with temperature increasing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation process of InAs quantum dots (QDs) on vicinal GaAs (1 0 0) substrates is studied by atomic force microscopy (AFM). It is found that after 1.2 MLs of InAs deposition, while the QDs with diameters less than the width of the multi-atomic steps are shrinking, the larger QDs are growing. Photoluminescence measurements of the uncapped QDs correspond well to the AFM structure observations of the QDs. We propose that the QDs undergo an anomalous coarsening process with modified growth kinetics resulting from the restrictions of the finite terrace sizes. A comparison between the QDs on the vicinal GaAs (1 0 0) substrates and the QDs on the exact GaAs (1 0 0) further verifies the effect of the multi-atomic steps on the formation of QDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have grown InAs self-assembled islands on vicinal GaAs( 001) substrates. Atomic force microscopy and photoluminescence studies show that the islands have a clear bimodal size distribution. While most of the small islands whose growth is limited by the width of one multi-atomic step have compact symmetric shapes, a large fraction of the large islands limited by the width of one step plus one terrace have asymmetric shapes which are elongated along the multi-atomic step lines. These results can be attributed to the shape-related energy of the islands at different states of their growth. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots (QDs), which are grown at relative low temperature (460degreesC) and embedded in GaAs p-i-n structure, have been studied by dc-biased electroreflectance. Franz-Keldysh oscillations from the undoped GaAs layer are used to determine the electric field under various bias voltages. Stark shift of -34 meV for the ground-state interband transition of the QDs is observed when the electric field increases from 105 to 308 kV/cm. The separation of the electron and hole states in the growth direction of 0.4 nm, corresponding to the built-in dipole moment of 6.4x10(-29) C m, is determined. It is found that the electron state lies above that of the hole, which is the same as that predicted by theoretical calculations for ideal pyramidal InAs QDs. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the single-electron and two-electron vertically assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks in an axial magnetic field. The change of the magnetic field strongly modifies the electronic structures as an effective potential, leading to the splitting of the levels and the crossings between the levels. The effect of the vertical alignment on the electronic structures is discussed. It is demonstrated that the switching of the ground-state spin exists between S=0 and S=1. The energy difference DeltaE between the lowest S=0 and S=1 states is shown as a function of the axial magnetic field. It is also found that the variation of the energy difference between the lowest S=0 and S=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a qubit to be fabricated by current growth techniques. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study a single electron tunneling through a vertically stacked self-assembled quantum disks structure using a transfer matrix technique in the framework of effective mass approximation. In the disks, the electron is confined both laterally and vertically; we separate the motion in the vertical and lateral directions within the adiabatic approximation and treat the energy levels of the latter as an effective confining potential. The influence of a constant applied electric field is taken into account using an exact Airy-function formalism and the current density is calculated at zero temperature. By increasing the widths of the barriers, we find the peaks of the current density shift toward lower voltage region; meanwhile, they can become even sharper. (C) 2004 Elsevier Ltd. All rights reserved.