882 resultados para redes neurais


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A crescente utilização dos serviços de telecomunicações principalmente sem fio tem exigido a adoção de novos padrões de redes que ofereçam altas taxas de transmissão e que alcance um número maior de usuários. Neste sentido o padrão IEEE 802.16, no qual é baseado o WiMAX, surge como uma tecnologia em potencial para o fornecimento de banda larga na próxima geração de redes sem fio, principalmente porque oferece Qualidade de Serviço (QoS) nativamente para fluxos de voz, dados e vídeo. A respeito das aplicações baseadas vídeo, tem ocorrido um grande crescimento nos últimos anos. Em 2011 a previsão é que esse tipo de conteúdo ultrapasse 50% de todo tráfego proveniente de dispositivos móveis. Aplicações do tipo vídeo têm um forte apelo ao usuário final que é quem de fato deve ser o avaliador do nível de qualidade recebida. Diante disso, são necessárias novas formas de avaliação de desempenho que levem em consideração a percepção do usuário, complementando assim as técnicas tradicionais que se baseiam apenas em aspectos de rede (QoS). Nesse sentido, surgiu a avaliação de desempenho baseada Qualidade de Experiência (QoE) onde a avaliação do usuário final em detrimento a aplicação é o principal parâmetro mensurado. Os resultados das investigações em QoE podem ser usados como uma extensão em detrimento aos tradicionais métodos de QoS, e ao mesmo tempo fornecer informações a respeito da entrega de serviços multimídias do ponto de vista do usuário. Exemplos de mecanismos de controle que poderão ser incluídos em redes com suporte a QoE são novas abordagens de roteamento, processo de seleção de estação base e tráfego condicionado. Ambas as metodologias de avaliação são complementares, e se usadas de forma combinada podem gerar uma avaliação mais robusta. Porém, a grande quantidade de informações dificulta essa combinação. Nesse contexto, esta dissertação tem como objetivo principal criar uma metodologia de predição de qualidade de vídeo em redes WiMAX com uso combinado de simulações e técnicas de Inteligência Computacional (IC). A partir de parâmetros de QoS e QoE obtidos através das simulações será realizado a predição do comportamento futuro do vídeo com uso de Redes Neurais Artificiais (RNA). Se por um lado o uso de simulações permite uma gama de opções como extrapolação de cenários de modo a imitar as mesmas situações do mundo real, as técnicas de IC permitem agilizar a análise dos resultados de modo que sejam feitos previsões de um comportamento futuro, correlações e outros. No caso deste trabalho, optou-se pelo uso de RNAs uma vez que é a técnica mais utilizada para previsão do comportamento, como está sendo proposto nesta dissertação.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Este trabalho propõe a utilização de técnicas de inteligência computacional objetivando identificar e estimar a potencia de ruídos em redes Digital Subscriber Line ou Linhas do Assinante Digital (DSL) em tempo real. Uma metodologia baseada no Knowledge Discovery in Databases ou Descobrimento de Conhecimento em Bases de Dados (KDD) para detecção e estimação de ruídos em tempo real, foi utilizada. KDD é aplicado para selecionar, pré-processar e transformar os dados antes da etapa de aplicação dos algoritmos na etapa de mineração de dados. Para identificação dos ruídos o algoritmo tradicional backpropagation baseado em Redes Neurais Artificiais (RNA) é aplicado objetivando identificar o tipo de ruído em predominância durante a coleta das informações do modem do usuário e da central. Enquanto, para estimação o algoritmo de regressão linear e o algoritmo híbrido composto por Fuzzy e regressão linear foram aplicados para estimar a potência em Watts de ruído crosstalk ou diafonia na rede. Os resultados alcançados demonstram que a utilização de algoritmos de inteligência computacional como a RNA são promissores para identificação de ruídos em redes DSL, e que algoritmos como de regressão linear e Fuzzy com regressão linear (FRL) são promissores para a estimação de ruídos em redes DSL.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As Redes da Próxima Geração consistem no desenvolvimento de arquiteturas que viabilizem a continuidade de serviços que proporcionem sempre a melhor conectividade (Always Best Connectivity - ABC) aos usuários móveis com suporte adequado à Qualidade de Experiência (QoE) para aplicações multimídia de alta definição, nesse novo contexto as arquiteturas têm perspectiva orientada a serviços e não a protocolos. Esta tese apresenta uma arquitetura para redes da próxima geração capaz de fornecer acesso heterogêneo sem fio e handover vertical transparente para as aplicações multimídia. A tese considera diferentes tecnologias sem fio e também adota o padrão IEEE 802.21 (Media Independent Handover – MIH) para auxiliar na integração e gerenciamento das redes heterogêneas sem fio. As tecnologias que a arquitetura possui são: IEEE 802.11 (popularmente denominada de WiFi), IEEE 802.16 (popularmente denominada de WiMAX) e LTE (popularmente denominada de redes 4G). O objetivo é que arquitetura tenha a capacidade de escolher entre as alternativas disponíveis a melhor conexão para o momento. A arquitetura proposta apresenta mecanismos de predição de Qualidade de Experiência (Quality of Experience - QoE) que será o parâmetro decisivo para a realização ou não do handover para uma nova rede. A predição para determinar se haverá ou não mudança de conectividade será feita com o uso da inteligência computacional de Redes Neurais Artificiais. Além disso a arquitetura também apresenta um mecanismo de descarte seletivo de pacotes especifico para aplicações multimídia. A proposta é avaliada via simulação utilizando-se o ns-2 (Network Simulator) e os resultados de desempenho são apresentados através das métricas de QoS, de QoE e também visualmente através da exibição de frames dos vídeos transmitidos na arquitetura.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The injection molding of automotive parts is a complex process due to the many non-linear and multivariable phenomena that occur simultaneously. Commercial software applications exist for modeling the parameters of polymer injection but can be prohibitively expensive. It is possible to identify these parameters analytically, but applying classical theories of transport phenomena requires accurate information about the injection machine, product geometry, and process parameters. However, neurofuzzy networks, which achieve a synergy by combining the learning capabilities of an artificial neural network with a fuzzy set's inference mechanism, have shown success in this field. The purpose of this paper was to use a multilayer perceptron artificial neural network and a radial basis function artificial neural network combined with fuzzy sets to produce an inference mechanism that could predict injection mold cycle times. The results confirmed neurofuzzy networks as an effective alternative to solving such problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wireless sensor networks (WSN) have gained ground in the industrial environment, due to the possibility of connecting points of information that were inaccessible to wired networks. However, there are several challenges in the implementation and acceptance of this technology in the industrial environment, one of them the guaranteed availability of information, which can be influenced by various parameters, such as path stability and power consumption of the field device. As such, in this work was developed a tool to evaluate and infer parameters of wireless industrial networks based on the WirelessHART and ISA 100.11a protocols. The tool allows quantitative evaluation, qualitative evaluation and evaluation by inference during a given time of the operating network. The quantitative and qualitative evaluation are based on own definitions of parameters, such as the parameter of stability, or based on descriptive statistics, such as mean, standard deviation and box plots. In the evaluation by inference uses the intelligent technique artificial neural networks to infer some network parameters such as battery life. Finally, it displays the results of use the tool in different scenarios networks, as topologies star and mesh, in order to attest to the importance of tool in evaluation of the behavior of these networks, but also support possible changes or maintenance of the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese tem por objetivo propor uma metodologia para recuperação de perfis verticais de temperatura na atmosfera com nuvens a partir de medidas de radiância feitas por satélite, usando redes neurais artificiais. Perfis verticais de temperatura são importantes condições iniciais para modelos de previsão de tempo, e são usualmente obtidos a partir de medidas de radiâncias feitas por satélites na faixa do infravermelho. No entanto, quando estas medidas são feitas na presença de nuvens, não é possível, com as técnicas atuais, efetuar a recuperação deste perfil. É uma perda significativa de informação, pois, em média, 20% dos pixels das imagens acusam presença de nuvens. Nesta tese, este problema é resolvido como um problema inverso em dois passos: o primeiro passo consiste na determinação da radiância que atinge a base da nuvem a partir da radiância medida pelos satélites; o segundo passo consiste na determinação do perfil vertical de temperaturas a partir da informação de radiância fornecida pelo primeiro passo. São apresentadas reconstruções do perfil de temperatura para quatro casos testes. Os resultados obtidos mostram que a metodologia adotada produz resultados satisfatórios e tem grande potencial de uso, permitindo incorporar informações sobre uma região mais ampla do globo e, consequentemente, melhorar os modelos de previsão do tempo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Somente no ano de 2011 foram adquiridos mais de 1.000TB de novos registros digitais de imagem advindos de Sensoriamento Remoto orbital. Tal gama de registros, que possui uma progressão geométrica crescente, é adicionada, anualmente, a incrível e extraordinária massa de dados de imagens orbitais já existentes da superfície da Terra (adquiridos desde a década de 70 do século passado). Esta quantidade maciça de registros, onde a grande maioria sequer foi processada, requer ferramentas computacionais que permitam o reconhecimento automático de padrões de imagem desejados, de modo a permitir a extração dos objetos geográficos e de alvos de interesse, de forma mais rápida e concisa. A proposta de tal reconhecimento ser realizado automaticamente por meio da integração de técnicas de Análise Espectral e de Inteligência Computacional com base no Conhecimento adquirido por especialista em imagem foi implementada na forma de um integrador com base nas técnicas de Redes Neurais Computacionais (ou Artificiais) (através do Mapa de Características Auto- Organizáveis de Kohonen SOFM) e de Lógica Difusa ou Fuzzy (através de Mamdani). Estas foram aplicadas às assinaturas espectrais de cada padrão de interesse, formadas pelos níveis de quantização ou níveis de cinza do respectivo padrão em cada uma das bandas espectrais, de forma que a classificação dos padrões irá depender, de forma indissociável, da correlação das assinaturas espectrais nas seis bandas do sensor, tal qual o trabalho dos especialistas em imagens. Foram utilizadas as bandas 1 a 5 e 7 do satélite LANDSAT-5 para a determinação de cinco classes/alvos de interesse da cobertura e ocupação terrestre em três recortes da área-teste, situados no Estado do Rio de Janeiro (Guaratiba, Mangaratiba e Magé) nesta integração, com confrontação dos resultados obtidos com aqueles derivados da interpretação da especialista em imagens, a qual foi corroborada através de verificação da verdade terrestre. Houve também a comparação dos resultados obtidos no integrador com dois sistemas computacionais comerciais (IDRISI Taiga e ENVI 4.8), no que tange a qualidade da classificação (índice Kappa) e tempo de resposta. O integrador, com classificações híbridas (supervisionadas e não supervisionadas) em sua implementação, provou ser eficaz no reconhecimento automático (não supervisionado) de padrões multiespectrais e no aprendizado destes padrões, pois para cada uma das entradas dos recortes da área-teste, menor foi o aprendizado necessário para sua classificação alcançar um acerto médio final de 87%, frente às classificações da especialista em imagem. A sua eficácia também foi comprovada frente aos sistemas computacionais testados, com índice Kappa médio de 0,86.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente dissertação trata da estipulação de limite de crédito para empresas clientes, de modo automático, com o uso de técnicas de Inteligência Computacional, especificamente redes neurais artificiais (RNA). Na análise de crédito as duas situações mais críticas são a liberação do crédito, de acordo com o perfil do cliente, e a manutenção deste limite ao longo do tempo de acordo com o histórico do cliente. O objeto desta dissertação visa a automação da estipulação do limite de crédito, implementando uma RNA que possa aprender com situações já ocorridas com outros clientes de perfil parecido e que seja capaz de tomar decisões baseando-se na política de crédito apreendida com um Analista de Crédito. O objetivo é tornar o sistema de crédito mais seguro para o credor, pois uma análise correta de crédito de um cliente reduz consideravelmente os índices de inadimplência e mantém as vendas num patamar ótimo. Para essa análise, utilizouse a linguagem de programação VB.Net para o sistema de cadastro e se utilizou do MatLab para treinamento das RNAs. A dissertação apresenta um estudo de caso, onde mostra a forma de aplicação deste software para a análise de crédito. Os resultados obtidos aplicando-se as técnicas de RNAs foram satisfatórias indicando um caminho eficiente para a determinação do limite de crédito.