833 resultados para radiographic vertebral fracture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical microenvironment at a fracture site could potentially influence the outcomes of bone fracture healing. It is known that, should the fixation construct be too stiff, or the gap between the fracture ends be too large, bones are less likely to heal. Flexible fixation or so-called “biological fixation” has been shown to encourage the formation of fracture callus, and therefore result in better healing outcomes. However, till date the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and optimal healing fracture healing outcomes has not been fully understood. This paper presents a computational model that can predict healing out-comes from early stage healing data under various fixation configurations. The results of the simulations demonstrate that the change of mechanical microenvironment of fracture site resulting from the different fixation configurations is of importance for the healing outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of β2-adrenergic receptors inhibits osteoblastic bone formation and enhances osteoclastic bone resorption. Whether β-blockers inhibit ovariectomy-induced bone loss and decrease fracture risk remains controversial. To further explore the role of β-adrenergic signaling in skeletal acquisition and response to estrogen deficiency, we evaluated mice lacking the three known β-adrenergic receptors (β-less). Body weight, percent fat, and bone mineral density were significantly higher in male β-less than wild-type (WT) mice, more so with increasing age. Consistent with their greater fat mass, serum leptin was significantly higher in β-less than WT mice. Mid-femoral cross-sectional area and cortical thickness were significantly higher in adult β-less than WT mice, as were femoral biomechanical properties (+28 to +49%, P < 0.01). Young male β-less had higher vertebral (1.3-fold) and distal femoral (3.5-fold) trabecular bone volume than WT (P < 0.001 for both) and lower osteoclast surface. With aging, these differences lessened, with histological evidence of increased osteoclast surface and decreased bone formation rate at the distal femur in β-less vs. WT mice. Serum tartrate-resistance alkaline phosphatase-5B was elevated in β-less compared with WT mice from 8–16 wk of age (P < 0.01). Ovariectomy inhibited bone mass gain and decreased trabecular bone volume/total volume similarly in β-less and WT mice. Altogether, these data indicate that absence of β-adrenergic signaling results in obesity and increased cortical bone mass in males but does not prevent deleterious effects of estrogen deficiency on trabecular bone microarchitecture. Our findings also suggest direct positive effects of weight and/or leptin on bone turnover and cortical bone structure, independent of adrenergic signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Radiographic examinations of the ankle are important in the clinical management of ankle injuries in hospital emergency departments. National (Australian) Emergency Access Targets (NEAT) stipulate that 90 percent of presentations should leave the emergency department within 4 hours. For a radiological report to have clinical usefulness and relevance to clinical teams treating patients with ankle injuries in emergency departments, the report would need to be prepared and available to the clinical team within the NEAT 4 hour timeframe; before the patient has left the emergency department. However, little is known about the demand profile of ankle injuries requiring radiographic examination or time until radiological reports are available for this clinical group in Australian public hospital emergency settings. Methods This study utilised a prospective cohort of consecutive cases of ankle examinations from patients (n=437) with suspected traumatic ankle injuries presenting to the emergency department of a tertiary hospital facility. Time stamps from the hospital Picture Archiving and Communication System were used to record the timing of three processing milestones for each patient's radiographic examination; the time of image acquisition, time of a provisional radiological report being made available for viewing by referring clinical teams, and time of final verification of radiological report. Results Radiological reports and all three time stamps were available for 431 (98.6%) cases and were included in analysis. The total time between image acquisition and final radiological report verification exceeded 4?hours for 404 (92.5%) cases. The peak demand for radiographic examination of ankles was on weekend days, and in the afternoon and evening. The majority of examinations were provisionally reported and verified during weekday daytime shift hours. Conclusions Provisional or final radiological reports were frequently not available within 4 hours of image acquisition among this sample. Effective and cost-efficient strategies to improve the support provided to referring clinical teams from medical imaging departments may enhance emergency care interventions for people presenting to emergency departments with ankle injuries; particularly those with imaging findings that may be challenging for junior clinical staff to interpret without a definitive radiological report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of crack depth (a/W) and specimen width W on the fracture toughness and ductile±brittle transition have been investigated using three-point bend specimens. Finite element analysis is employed to obtain the stress-strain fields ahead of the crack tip. The results show that both normalized crack depth (a/W) and specimen width (W) affect the fracture toughness and ductile±brittle fracture transition. The measured crack tip opening displacement decreases and ductile±brittle transition occurs with increasing crack depth (a/W) from 0.1 to 0.2 and 0.3. At a fixed a/W (0.2 or 0.3), all specimens fail by cleavage prior to ductile tearing when specimen width W increases from 25 to 40 and 50 mm. The lower bound fracture toughness is not sensitive to crack depth and specimen width. Finite element analysis shows that the opening stress in the remaining ligament is elevated with increasing crack depth or specimen width due to the increase of in-plane constraint. The average local cleavage stress is dependent on both crack depth and specimen width but its lower bound value is not sensitive to constraint level. No fixed distance can be found from the cleavage initiation site to the crack tip and this distance increases gradually with decreasing inplane constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ductile-brittle fracture transition was investigated using compact tension (CT) specimens from -70oC to 40oC for a carbon steel. Large deformation finite element analysis has been carried out to simulate the stable crack growth in the compact tension (CT, a/W=0.6), three point-point bend (SE(B), a/W=0.1) and centre-cracked tension (M(T), a/W=0.5) specimens. Experimental crack tip opening displacement (CTOD) resistance curve was employed as the crack growth criterion. Ductile tearing is sensitive to constraint and tearing modulus increases with reduced constraint level. The finite element analysis shows that path-dependence of J-integral occurs from the very beginning of crack growth and ductile crack growth elevates the opening stress on the remaining ligament. Cleavage may occur after some ductile crack growth due to the increase of opening stress. For both stationary and growing cracks, the magnitude of opening stress increases with increasing in-plane constraint. The ductile-brittle transition takes place when the opening stress ahead of the crack tip reaches the local cleavage stress as the in-plane constraint of the specimen increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: In an attempt to reduce stress shielding in the proximal femur multiple new shorter stem design have become available. We investigated the load to fracture of a new polished tapered cemented short stem in comparison to the conventional polished tapered Exeter stem. Method: A total of forty-two stems, twenty-one short stems and twenty-one conventional stems both with three different offsets were cemented in a composite sawbone model and loaded to fracture. Results: study showed that femurs will break at a significantly lower load to failure with a shorter compared to conventional length Exeter stem. Conclusion: This Both standard and short stem design are safe to use as the torque to failure is 7–10 times as much as the torques seen in activities of daily living.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project examined the differences in healing of metaphyseal bone, when the implants of variable stiffness are used for fracture fixation. This knowledge is important in development of novel orthopaedic implants, used in orthopaedic surgery to stabilise the fractures. Dr Koval used a mouse model to create a fracture, and then assessed its healing with a combination of mechanical testing, microcomputed tomography and histomorphometric examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex bone contour and anatomical variations between individual bones complicate the process of deriving an implant shape that fits majority of the population. This thesis proposes an automatic fitting method for anatomically-precontoured plates based on clinical requirements, and investigated if 100% anatomical fit for a group of bone is achievable through manual bending of one plate shape. It was found that, for the plate used, 100% fit is impossible to achieve through manual bending alone. Rather, newly-developed shapes are also required to obtain anatomical fit in areas with more complex bone contour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design Delphi panel and cohort study. Objective To develop and refine a condition-specific, patient-reported outcome measure, the Ankle Fracture Outcome of Rehabilitation Measure (A-FORM), and to examine its psychometric properties, including factor structure, reliability, and validity, by assessing item fit with the Rasch model. Background To our knowledge, there is no patient-reported outcome measure specific to ankle fracture with a robust content foundation. Methods A 2-stage research design was implemented. First, a Delphi panel that included patients and health professionals developed the items and refined the item wording. Second, a cohort study (n = 45) with 2 assessment points was conducted to permit preliminary maximum-likelihood exploratory factor analysis and Rasch analysis. Results The Delphi panel reached consensus on 53 potential items that were carried forward to the cohort phase. From the 2 time points, 81 questionnaires were completed and analyzed; 38 potential items were eliminated on account of greater than 10% missing data, factor loadings, and uniqueness. The 15 unidimensional items retained in the scale demonstrated appropriate person and item reliability after (and before) removal of 1 item (anxious about footwear) that had a higher-than-ideal outfit statistic (1.75). The “anxious about footwear” item was retained in the instrument, but only the 14 items with acceptable infit and outfit statistics (range, 0.5–1.5) were included in the summary score. Conclusion This investigation developed and refined the A-FORM (Version 1.0). The A-FORM items demonstrated favorable psychometric properties and are suitable for conversion to a single summary score. Further studies utilizing the A-FORM instrument are warranted. J Orthop Sports Phys Ther 2014;44(7):488–499. Epub 22 May 2014. doi:10.2519/jospt.2014.4980

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphyne is an allotrope of graphene. The mechanical properties of graphynes (α-, β-, γ- and 6,6,12-graphynes) under uniaxial tension deformation at different temperatures and strain rates are studied using molecular dynamics simulations. It is found that graphynes are more sensitive to temperature changes than graphene in terms of fracture strength and Young's modulus. The temperature sensitivity of the different graphynes is proportionally related to the percentage of acetylenic linkages in their structures, with the α-graphyne (having 100% of acetylenic linkages) being most sensitive to temperature. For the same graphyne, temperature exerts a more pronounced effect on the Young's modulus than fracture strength, which is different from that of graphene. The mechanical properties of graphynes are also sensitive to strain rate, in particular at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During fracture healing, many complex and cryptic interactions occur between cells and bio-chemical molecules to bring about repair of damaged bone. In this thesis two mathematical models were developed, concerning the cellular differentiation of osteoblasts (bone forming cells) and the mineralisation of new bone tissue, allowing new insights into these processes. These models were mathematically analysed and simulated numerically, yielding results consistent with experimental data and highlighting the underlying pattern formation structure in these aspects of fracture healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatomically pre-contoured fracture fixation plates are a treatment option for bone fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. However, recent studies showed that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. Therefore, the plates have to be manually fitted and deformed by surgeons to fit each patient optimally. The process is time-intensive and labor-intensive, and could lead to adverse clinical implications such as wound infection or plate failure. This paper proposes a new iterative method to simulate the patient-specific deformation of an optimally fitting plate for pre-operative planning purposes. We further demonstrate the validation of the method through a case study. The proposed method involves the integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks, and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.