944 resultados para quantitative methods


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we address a problem arising in risk management; namely the study of price variations of different contingent claims in the Black-Scholes model due to anticipating future events. The method we propose to use is an extension of the classical Vega index, i.e. the price derivative with respect to the constant volatility, in thesense that we perturb the volatility in different directions. Thisdirectional derivative, which we denote the local Vega index, will serve as the main object in the paper and one of the purposes is to relate it to the classical Vega index. We show that for all contingent claims studied in this paper the local Vega index can be expressed as a weighted average of the perturbation in volatility. In the particular case where the interest rate and the volatility are constant and the perturbation is deterministic, the local Vega index is an average of this perturbation multiplied by the classical Vega index. We also study the well-known goal problem of maximizing the probability of a perfect hedge and show that the speed of convergence is in fact dependent of the local Vega index.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Correspondence analysis has found extensive use in ecology, archeology, linguisticsand the social sciences as a method for visualizing the patterns of association in a table offrequencies or nonnegative ratio-scale data. Inherent to the method is the expression of the datain each row or each column relative to their respective totals, and it is these sets of relativevalues (called profiles) that are visualized. This relativization of the data makes perfect sensewhen the margins of the table represent samples from sub-populations of inherently differentsizes. But in some ecological applications sampling is performed on equal areas or equalvolumes so that the absolute levels of the observed occurrences may be of relevance, in whichcase relativization may not be required. In this paper we define the correspondence analysis ofthe raw unrelativized data and discuss its properties, comparing this new method to regularcorrespondence analysis and to a related variant of non-symmetric correspondence analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the fixed design regression model, additional weights areconsidered for the Nadaraya--Watson and Gasser--M\"uller kernel estimators.We study their asymptotic behavior and the relationships between new andclassical estimators. For a simple family of weights, and considering theIMSE as global loss criterion, we show some possible theoretical advantages.An empirical study illustrates the performance of the weighted estimatorsin finite samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generalization of simple correspondence analysis, for two categorical variables, to multiple correspondence analysis where they may be three or more variables, is not straighforward, both from a mathematical and computational point of view. In this paper we detail the exact computational steps involved in performing a multiple correspondence analysis, including the special aspects of adjusting the principal inertias to correct the percentages of inertia, supplementary points and subset analysis. Furthermore, we give the algorithm for joint correspondence analysis where the cross-tabulations of all unique pairs of variables are analysed jointly. The code in the R language for every step of the computations is given, as well as the results of each computation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we propose using small area estimators to improve the estimatesof both the small and large area parameters. When the objective is to estimateparameters at both levels accurately, optimality is achieved by a mixed sampledesign of fixed and proportional allocations. In the mixed sample design, oncea sample size has been determined, one fraction of it is distributedproportionally among the different small areas while the rest is evenlydistributed among them. We use Monte Carlo simulations to assess theperformance of the direct estimator and two composite covariant-freesmall area estimators, for different sample sizes and different sampledistributions. Performance is measured in terms of Mean Squared Errors(MSE) of both small and large area parameters. It is found that the adoptionof small area composite estimators open the possibility of 1) reducingsample size when precision is given, or 2) improving precision for a givensample size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When dealing with the design of service networks, such as healthand EMS services, banking or distributed ticket selling services, thelocation of service centers has a strong influence on the congestion ateach of them, and consequently, on the quality of service. In this paper,several models are presented to consider service congestion. The firstmodel addresses the issue of the location of the least number of single--servercenters such that all the population is served within a standard distance,and nobody stands in line for a time longer than a given time--limit, or withmore than a predetermined number of other clients. We then formulateseveral maximal coverage models, with one or more servers per service center.A new heuristic is developed to solve the models and tested in a 30--nodesnetwork.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the rate of convergence of an appropriatediscretization scheme of the solution of the Mc Kean-Vlasovequation introduced by Bossy and Talay. More specifically,we consider approximations of the distribution and of thedensity of the solution of the stochastic differentialequation associated to the Mc Kean - Vlasov equation. Thescheme adopted here is a mixed one: Euler/weakly interactingparticle system. If $n$ is the number of weakly interactingparticles and $h$ is the uniform step in the timediscretization, we prove that the rate of convergence of thedistribution functions of the approximating sequence in the $L^1(\Omega\times \Bbb R)$ norm and in the sup norm is of theorder of $\frac 1{\sqrt n} + h $, while for the densities is ofthe order $ h +\frac 1 {\sqrt {nh}}$. This result is obtainedby carefully employing techniques of Malliavin Calculus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we attempt to describe the general reasons behind the world populationexplosion in the 20th century. The size of the population at the end of the century inquestion, deemed excessive by some, was a consequence of a dramatic improvementin life expectancies, attributable, in turn, to scientific innovation, the circulation ofinformation and economic growth. Nevertheless, fertility is a variable that plays acrucial role in differences in demographic growth. We identify infant mortality, femaleeducation levels and racial identity as important exogenous variables affecting fertility.It is estimated that in poor countries one additional year of primary schooling forwomen leads to 0.614 child less per couple on average (worldwide). While it may bepossible to identify a global tendency towards convergence in demographic trends,particular attention should be paid to the case of Africa, not only due to its differentdemographic patterns, but also because much of the continent's population has yet toexperience improvement in quality of life generally enjoyed across the rest of theplanet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyse the ratios of the data values. The usual approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property. This weighted log-ratio analysis is theoretically equivalent to spectral mapping , a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modelling. The weighted log-ratio methodology is applied here to frequency data in linguistics and to chemical compositional data in archaeology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the analysis of multivariate categorical data, typically the analysis of questionnaire data, it is often advantageous, for substantive and technical reasons, to analyse a subset of response categories. In multiple correspondence analysis, where each category is coded as a column of an indicator matrix or row and column of Burt matrix, it is not correct to simply analyse the corresponding submatrix of data, since the whole geometric structure is different for the submatrix . A simple modification of the correspondence analysis algorithm allows the overall geometric structure of the complete data set to be retained while calculating the solution for the selected subset of points. This strategy is useful for analysing patterns of response amongst any subset of categories and relating these patterns to demographic factors, especially for studying patterns of particular responses such as missing and neutral responses. The methodology is illustrated using data from the International Social Survey Program on Family and Changing Gender Roles in 1994.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we explore the effects of the minimum pension program on welfare andretirement in Spain. This is done with a stylized life-cycle model which provides a convenient analytical characterization of optimal behavior. We use data from the Spanish Social Security to estimate the behavioral parameters of the model and then simulate the changes induced by the minimum pension in aggregate retirement patterns. The impact is substantial: there is threefold increase in retirement at 60 (the age of first entitlement) with respect to the economy without minimum pensions, and total early retirement (before or at 60) is almost 50% larger.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Method is offered that makes it possible to apply generalized canonicalcorrelations analysis (CANCOR) to two or more matrices of different row and column order. The new method optimizes the generalized canonical correlationanalysis objective by considering only the observed values. This is achieved byemploying selection matrices. We present and discuss fit measures to assessthe quality of the solutions. In a simulation study we assess the performance of our new method and compare it to an existing procedure called GENCOM,proposed by Green and Carroll. We find that our new method outperforms the GENCOM algorithm both with respect to model fit and recovery of the truestructure. Moreover, as our new method does not require any type of iteration itis easier to implement and requires less computation. We illustrate the methodby means of an example concerning the relative positions of the political parties inthe Netherlands based on provincial data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtain minimax lower and upper bounds for the expected distortionredundancy of empirically designed vector quantizers. We show that the meansquared distortion of a vector quantizer designed from $n$ i.i.d. datapoints using any design algorithm is at least $\Omega (n^{-1/2})$ awayfrom the optimal distortion for some distribution on a bounded subset of${\cal R}^d$. Together with existing upper bounds this result shows thatthe minimax distortion redundancy for empirical quantizer design, as afunction of the size of the training data, is asymptotically on the orderof $n^{1/2}$. We also derive a new upper bound for the performance of theempirically optimal quantizer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Principal curves have been defined Hastie and Stuetzle (JASA, 1989) assmooth curves passing through the middle of a multidimensional dataset. They are nonlinear generalizations of the first principalcomponent, a characterization of which is the basis for the principalcurves definition.In this paper we propose an alternative approach based on a differentproperty of principal components. Consider a point in the space wherea multivariate normal is defined and, for each hyperplane containingthat point, compute the total variance of the normal distributionconditioned to belong to that hyperplane. Choose now the hyperplaneminimizing this conditional total variance and look for thecorresponding conditional mean. The first principal component of theoriginal distribution passes by this conditional mean and it isorthogonal to that hyperplane. This property is easily generalized todata sets with nonlinear structure. Repeating the search from differentstarting points, many points analogous to conditional means are found.We call them principal oriented points. When a one-dimensional curveruns the set of these special points it is called principal curve oforiented points. Successive principal curves are recursively definedfrom a generalization of the total variance.