929 resultados para photo-induced effects
Resumo:
Oxovanadium(IV) complexes of vitamin-B6 Schiff base, viz., VO(HL1/L-2/L-3)(B)] Cl (1-4), where B is 2,2'-bipyridine (bpy in 1 and 2), 11-(9-acridinyl)dipyrido3,2-a:2',3'-c]phenazine (acdppz in 3 and 4), H2L1 center dot HCl is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridin-1-ium chloride (in 1 and 4), HL2 is 2-(((2-(1H-imidazol-4-yl)ethyl) imino)methyl) phenol (in 2) and HL3 is 4-(((2-(1H-imidazol-4- yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in 3) were synthesized, characterized and their cellular uptake, photo-activated cytotoxicity and intracellular localization were studied. Complexes 1a, as the perchlorate salt of 1, and 2a, as the hexafluorophosphate salt of 2, were structurally characterized. Vitamin-B6 transporting membrane carrier (VTC) mediated entry into tumour cells in preference to the normal ones seems to be responsible for the higher cellular uptake of the complexes into HeLa and MCF-7 cells over MCF-10A cells. Complexes 3 and 4 having acdppz as the photosensitizer exhibit remarkable photocytotoxicity in these cancer cells giving IC50 of < 0.9 mu M. The complexes remain non-toxic in the dark. The complexes show photo-induced apoptotic cell death via singlet oxygen (O-1(2)) generation. Fluorescence microscopy reveals specific localization of complex 4 to endoplasmic reticulum (ER) and generation of O-1(2) possibly leads to apoptotic cell death by triggering ER stress response (ERSR).
Resumo:
Restricted area heterojunctions, an array of lead sulfide colloidal quantum dots (PbS-CQDs) and crystalline silicon, are studied with a non-destructive remote contact light beam induced current (RC-LBIC) technique. As well as getting good quality active area images we observed an anomalous unipolar signal response for the PbS-CQD/n-Si devices and a conventionally expected bipolar signal profile for the PbS-CQD/p-Si devices. Interestingly, our simulation results consistently yielded a unipolar and bipolar nature in the signals related to the PbSCQD/n-Si and PbS-CQD/p-Si heterostructures, respectively. In order to explain the physical mechanism involved in the unipolar signal response of the PbS-CQD/n-Si devices, we propose a model based on the band alignment in the heterojunctions, in addition to the distribution of photo-induced excess majority carriers across the junction. Given that the RC-LBIC technique is well suited to this context, the presence of these two distinct mechanisms (the bipolar and unipolar nature of the signals) needs to be considered in order to have a better interpretation of the data in the characterization of an array of homo/heterojunctions.
Resumo:
Ternary copper(Il) complexes of salicylaldehyde-histamine Schiff base (HL) and pyridyl ligands, viz. Cu(bpy)(L)](ClO4) (1) and Cu(dppz)(L)](C104) (2), where bpy is 2,2'-bipyridine (in 1) and dppz is dipyrido3,2-a:2',3'-c]phenazine (in 2), were synthesized, characterized and their DNA binding, photo-activated DNA cleavage activity and photocytotoxicity studied. The 1:1 electrolytic one-electron paramagnetic complexes showed a d-d band near 670 nm in aqueous DMF (1:1 v/v). The crystal structure of complex 1 showed the metal in CuN4O distorted square-pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (K-b) of similar to 10(5) M-1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming (OH)-O-center dot radicals. It showed remarkable photocytotoxicity in human cervical cancer cells (HeLa) giving IC50 of 1.6 mu M in visible light (400-700 nm) with low dark toxicity. The photo-induced cell death is via generation of oxidative stress by reactive oxygen species.
Resumo:
The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages)
Resumo:
In 1998, the National Marine Fisheries Service (NMFS) began a series of marine angler expenditure surveys in the coastal regions of the United States (U.S.) to evaluate marine recreational fishing expenditures and the financial impacts of these expenditures in each region and the U.S. as a whole. In this report, we use the previously estimated expenditure estimates to assess the total financial impact of anglers’ saltwater expenditures. Estimates are provided for sales, income, employment, and tax impacts for each coastal state in the U.S. Aggregate estimates are also provided for the entire U.S., excluding Alaska, Hawaii, and Texas. Direct, indirect, and induced effects associated with resident and non-resident angler expenditures were estimated using a regional input-output modeling system called IMPLAN Pro. Nationwide, recreational saltwater fishing generated over $30.5 billion in sales in 2000, nearly $12.0 billion in income, and supported nearly 350,000 jobs. Approximately 89 cents of every dollar spent by saltwater anglers was estimated to remain within the U.S. economy. At the state level, many of the goods anglers purchased were imports, and, as such, as little as 44 cents of every dollar stayed in Rhode Island and as much as 80 cents of every dollar stayed in Georgia. In the Northeast, the highest impacts were generated in New Jersey, even though recreational fishing expenditures in Massachusetts and Maryland were considerably higher. In the Southeast, the highest impacts were generated in Florida, and on the Pacific Coast, the highest impacts were generated in California. Expenditures on boat maintenance/expenses generated more impacts than any other expenditure category in the U.S. Expenditures on rods and reels was the single most important expense category in terms of generating impacts in most of the Northeast states. Expenditures on boat expenses generated the highest in most Southeast states, and expenditures for boat accessories produced the highest impacts in most Pacific Coast states.(PDF file contains 184 pages.)
Resumo:
基于对称双侧激光二极管(LD)抽运Nd:GGG(掺钕钆镓石榴石)激光晶体板条,从热传导基本方程出发,以废热等效于内热源模型为前提,利用有限元分析软件ANSYS对Nd:GGG板条在热容工作下的瞬态温度场及应力场进行了数值模拟,分析了在不同边界条件下温度和应力随时间和空间的变化特性及其热致变形。计算结果表明:在激光发射阶段,边界非绝热使得板条在垂直光轴方向产生温度梯度,由此产生的折射率梯度和应力梯度导致距离光轴最远的板条边缘和光轴处产生约0.2μm的变形量。同时模拟了冷却阶段空气对流冷却、水循环冷却及喷雾冷却
Resumo:
总结了飞秒激光与晶体和玻璃相互作用产生的新现象,如光致折射率改变、光致晶体相变、光还原稀土离子及光致发光等。并分析了它们可能的应用。同时简要的介绍了各种现象产生的机理,展望了飞秒激光与其它物质相互作用可能的研究方向及可能出现的新现象。指出了进行这些研究时可能采用的新方法。
Resumo:
Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.
Resumo:
Based on the analytical solution to the time-dependent Schrodinger equations, we evaluate the holonomic quantum computation beyond the adiabatic limit. Besides providing rigorous confirmation of the geometrical prediction of holonomies, the present dynamical resolution offers also a practical means to study the nonadiabaticity induced effects for the universal qubit operations.
Resumo:
Semi-insulating (SI) InP wafers of 2 and 3 in. diameters have been prepared by annealing undoped LEC InP at 930 degreesC for 80 h under pure phosphorus ambient (PP) and iron phosphide ambient (IP). The electrical uniformity of annealed undoped SI wafers, along with a Fe-doped as-grown SI LEC InP wafer, has been characterized by whole wafer PL mapping and radial Hall measurements. Defects in these wafers have been detected by photo-induced current transient spectroscopy (PICTS). The results indicated that the uniformity of IP wafer is much better than that of PP wafer and as-grown Fe-doped Si InP wafer. There are fewer traps in undoped SI InP IP wafer than in as grown Fe-doped and undoped SI InP PP wafer, as evidenced by PICTS. The good uniformity of the IP wafer is related to the nonexistence of high concentration of thermally induced defects. The mechanism for this phenomenon is discussed based on the results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Recording with both parallel and orthogonal linearly polarized lights, polarization holographic storage in genetic mutant BR-D96N film is reported with both transmission type geometry and reflection type geometry. Polarization properties of diffraction light and scattering light are discussed for two different cases, parallel polarization recording and orthogonal polarization recording. It shows that, compared with recording with parallel polarization lights, orthogonal polarization holography can separate the diffraction light from the scattering noise, therefore improving the signal-to-noise ratio. It also shows that, compared with reconstruction with reference light, reconstruction with phase conjugated wave of the reference light can improve the signal-to-noise ratio of the reconstructed diffraction image, and also the wave-front aberration of the object light introduced by irregular phase object in the optical pass-way can also be corrected effectively, which ensures that the reconstructed diffraction image has a better fidelity. The preliminary angle-multiplexed volume holographic storage multiplexed by transmission type geometry and reflection type geometry is demonstrated in the BR-D96N film. Experiment shows that there is no cross-talk between the two pages of images except for some scattering noises.
Resumo:
Semi-insulating (SI) InP wafers of 50 and 75mm in diameter can be obtained by annealing of undoped liquid encapsulated Czochralski (LEC) InP at 930 ℃ for 80h. The annealing ambient can be pure phosphorus (PP) or iron phosphide (IP). The IP-SI InP wafers have good electrical parameters and uniformity of whole wafer. However, PP-SI InP wafers exhibit poor uniformity and electrical parameters, Photoluminescence which is subtle to deep defect appears in IP-annealed semi-insulating InP. Traps in annealed SI InP are detected by the spectroscopy of photo-induced current transient. The results indicate that there are fewer traps in IP-annealed undoped SI InP than those in as-grown Fe-doped and PP-undoped SI-undoped SI InP. The formation mechanism of deep defects in annealed undoped InP is discussed.
Resumo:
Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.
Resumo:
Semi-insulating (SI) InP wafers of 2 and 3 in. diameters have been prepared by annealing undoped LEC InP at 930 degreesC for 80 h under pure phosphorus ambient (PP) and iron phosphide ambient (IP). The electrical uniformity of annealed undoped SI wafers, along with a Fe-doped as-grown SI LEC InP wafer, has been characterized by whole wafer PL mapping and radial Hall measurements. Defects in these wafers have been detected by photo-induced current transient spectroscopy (PICTS). The results indicated that the uniformity of IP wafer is much better than that of PP wafer and as-grown Fe-doped Si InP wafer. There are fewer traps in undoped SI InP IP wafer than in as grown Fe-doped and undoped SI InP PP wafer, as evidenced by PICTS. The good uniformity of the IP wafer is related to the nonexistence of high concentration of thermally induced defects. The mechanism for this phenomenon is discussed based on the results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
细胞生物学研究的一个重要方向是动态地控制细胞在基底上的黏附。最近,随着表面化学的研究深入,尤其是对烷基硫醇在金基底上形成自组装单层膜(self-assembled monolayers, SAMs)这一体系的研究,使得人们能在分子水平的表面上控制细胞黏附。精氨酸-甘氨酸-天冬氨酸(arginine-glycine-aspartate, RGD)序列首先是从细胞外基质蛋白中分离出来的,能够识别并非共价结合细胞膜表面的整合素受体,从而促进细胞黏附。以前的一些工作已经证实,将含有RGD的肽链连接到SAMs表面之后,能够生物特异性地黏附动物细胞。已有的手段比如光照、电压、加热、微电极、微流控以及表面纳米形貌的梯度变化,都不能真正实现可逆地控制细胞黏附,原因是这些方法所用的化学有限;这些方法也不能得到完全抗拒细胞黏附的表面,原因是这些方法产生的表面缺陷等不完整。用两种不同波长的光(紫外光和可见光)照射偶氮苯,偶氮苯会发生可逆的光致异构变化,因此,偶氮苯的光致异构性质可以用来可逆地控制细胞在表面黏附。运用含有偶氮苯的混合SAMs,偶氮苯的末端连接GRGDS肽,混合SAMs中是以末端为六聚乙二醇的硫醇为背景,该SAMs修饰而成的表面能够黏附或者抗拒细胞黏附,其表面黏附性质取决于SAMs中偶氮苯的构象。该方法提供了一种在分子水平的表面上我们所了解到的唯一能可逆控制细胞黏附的方法,该方法需要用到的光源来自于标准荧光显微镜所配置的汞灯。 为了实现在金基底表面可逆的控制细胞黏附,我们合成了如下三个化合物: 由于化合物1的溶解性很差,几乎在所有溶剂里都不溶,所以不能直接用化合物1制备SAMs;化合物2能高效地抗拒细胞的黏附;化合物3的偶氮苯末端是活化酯,能够连接GRGDS肽,从而控制细胞黏附。 将化合物2和化合物3以一定的比例均匀混合在金基底表面形成SAMs,然后将GRGDS肽连接到偶氮苯(反式)的末端(通过GRGDS肽的甘氨酸上的伯胺基与偶氮苯末端的活化酯反应),从而得到细胞黏附的表面。用紫外光照射该细胞黏附表面5-10小时,随着偶氮苯的构象由反式变为顺式,偶氮苯末端的GRGDS肽淹没在化合物2的六聚乙二醇中,得到抗拒细胞黏附的惰性表面。再用可见光照射该惰性表面1个小时,随着偶氮苯的构象由顺式变为反式,原先埋没在六聚乙二醇中的GRGDS肽伸展至单层膜的末端,又得到了细胞黏附的表面。因此,该表面能完全可逆地控制细胞在金表面黏附。 An important area in cell biology is the dynamic control of cell adhesion on substrates. Recent advancements in surface chemistry, in particular, self-assembled monolayers (SAMs) of alkanethiols on gold substrates, have permitted unprecedented control of cell adhesion via molecularly defined surfaces. The tri-peptide sequence arginine-glycine-aspartate (RGD), initially isolated from the extracellular matrix (ECM) proteins, can recognize and non-covalently bind with integrin receptors on cell membranes to promote cell adhesion. Some previous work has demonstrated that RGD peptide grafted on SAMs can allow bio-specific adhesion of mammalian cells that mimic natural adhesion. Existing technologies such as light, voltage, heat, microelectrodes, microfluidic systems and surface gradient of nanotopography, either cannot realize fully reversible control of cell adhesion, due to the limitation in the chemistry used, or cannot yield a surface completely resistant against cell adhesion, due to the imperfection of surfaces. Azobenzenes undergo reversible photo-induced isomerization rapidly at two different wavelengths of light (UV and visible light), it therefore potentially allows the reversible control of cell adhesion on a surface. By using a mixed SAMs presenting azobenzene groups terminated in GRGDS peptides in a background of hexa(ethylene glycol) groups, the surface can either accommodate or resist cell adhesion depending on the conformation of the azobenzene embedded in SAMs. This method provides the only means we know to control cell adhesion reversibly on a molecularly well-defined surface by using light generated by a mercury lamp equipped on standard fluorescence microscopes. To realize the reversible control of cell adhesion on gold surface, we synthesized three kinds of compounds as following, We found that it was difficult to obtain SAMs directly from compound 1 because of its poor solubility in almost all kinds of solvents; compound 2 can resist cell adhesion efficiently; compound 3 presents an azobenzene terminated with NHS-activated ester, which can couple with a GRGDS peptide to control cell adhesion. After coating a gold surface with compound 2 and 3 in appropriate ratios to form a SAM followed by coupling the GRGDS peptides with NHS-activated esters at the end of azobenzene (E configuration) resulted in a cell-adhesive SAM. Irradiating this cell-adhesive SAM with UV light for 5-10 h converted the E configuration of azobenzene into the Z form, the GRGDS peptides becoming masked in the PEG, resulting in a cell-resistant surface. These SAM could again support cell adhesion as a result of the conformational switch of azobenzene from Z to E with the irradiation of visible light for 1 h. This surface, therefore, allows completely reversible control of cell adhesion on a gold surface.