999 resultados para panel de FISH
Resumo:
Fish farming introduces nutrients, microbes and a wide variety of chemicals such as heavy metals, antifoulants and antibiotics to the surrounding environment. Introduction of antibiotics has been linked with the increased incidence of antibiotic resistant pathogenic bacteria in the farm vicinities. In this thesis molecular methods such as quantitative PCR and DNA sequencing were applied to analyze bacterial communities in sediments from fish farms and pristine locations. Altogether four farms and four pristine sites were sampled in the Baltic Sea. Two farm and two pristine locations were sampled over a surveillance period of four years. Furthermore, a new methodology was developed as a part of the study that permits amplifying single microbial genomes and capturing them according to any genetic traits, including antibiotic resistance genes. The study revealed that several resistance genes for tetracycline were found at the sediment underneath the aquaculture farms. The copy number of these genes remained elevated even at a farm that had not used any antibiotics since year 2000, six years before this study started. Similarly, an increase in the amount of mercury resistance gene merA was observed at the aquaculture sediment. The persistence of the resistance genes in absence of any selection pressure from antibiotics or heavy metals suggests that the genes may be introduced to the sediment by the farming process. This is also supported by the diversity pattern of the merA gene between farm and pristine sediments. The bacterial community-level changes in response to fish farming were very complex and no single phylogenetic groups were found that would be typical to fish farm sediments. However, the community structures had some correlation with the exposure to fish farming. Our studies suggest that the established approaches to deal with antibiotic resistance at the aquaculture, such as antibiotic cycling, are fundamentally flawed because they cannot prevent the introduction of the resistance genes and resistant bacteria to the farm area by the farming process. Further studies are required to study the entire fish farming process to identify the sources of the resistance genes and the resistant bacteria. The results also suggest that in order to prevent major microbiological changes in the surrounding aquatic environment, the farms should not be founded in shallow water where currents do not transport sedimenting matter from the farms. Finally, the technique to amplify and select microbial genomes will potentially have a considerable impact in microbial ecology and genomics.
Resumo:
Yhteenveto: Elohopea Suomen metsäjärvissä ja tekoaltaissa: ihmisen vaikutus kuormitukseen ja pitoisuuksiin kaloissa.
Resumo:
Kalateollisuus ja kalakauppa tarvitsisivat menetelmän, jolla kalan säilyvyyttä voitaisiin arvioida reaaliaikaisesti ja luotettavasti. Laatuindeksimenetelmä QIM® (engl. Quality Index Method) on käytössä jo useassa Euroopan maassa useille eri kalalajeille. QIM® pyrkii lajikohtaisesti ennustamaan aistinvaraisten ominaisuuksien muutoksien perusteella jäljellä olevaa säilyvyysaikaa. Työn tavoitteena oli luoda QIM® meressä kasvatetulle siialle. Tämä on ensimmäinen suomalaiselle kalalle tehtävä QIM®, ja tavoitteena on saada meressä kasvatetun siian QIM® myös viralliseen QIM®-käsikirjaan. Tutkimus tehtiin Elintarviketurvallisuusvirasto Eviralle. Tutkittavat kalat Evira osti Kalatukku E. Eriksson Oy:ltä. QIM®-tuloksen tueksi tutkittiin yhden erän pH ja indikoitiin pilaantuminen myös mikrobiologisesti. Luotiin myös kasvatetun siian profiili (arvioijia 13). Itse tutkimusosassa kaksi profiiliraatia (n = 9) ja QIM®-raati (n = 5) arvioivat raa’an ja kypsän kalan. Tulos varmistettiin myös aistinvaraisella kalan laadunarviointimenetelmällä (Evira 8001). QIM®-raati loi QIM®-luonnoksen ja luonnoksen toimivuutta testattiin. Kiinteänä osana työn toteutusta oli myös eri vaiheiden muutosten valokuvaus. Tämän tutkimuksen mukaan luotu QIM®-luonnos on toimiva pohja validoitaessaa QIM®-menetelmää siialle. Voidaan myös todeta, että QIM® soveltuu meressä kasvatetulle siialle. Kypsän kalan aistinvaraisella laadunarviointimenetelmällä (Evira 8001) analysoitiin säilytysajankohta, jolloin kypsästä kalasta voitiin todeta kalan kauppakelvottomuus – tätä pidettiin ajanhetkenä, jolloin raa’an kalan tutkiminen voitiin lopettaa. Tutkimuksessa käytetty mikrobiologinen menetelmä ”Mikrobien lukumäärän määrittäminen” (Evira 3420/1) korreloi QIM®-tuloksen kanssa; kalanäyte oli tässä tutkimuksessa niin mikrobiologisesti arvioituna kuin laatuindeksinkin mukaan käyttökelvotonta viidentenätoista päivänä. Tutkittujen kalojen pH-arvoja ei voitu verrata laatuindeksiin, sillä tässä tutkimuksessa mitattujen pH-arvojen tuloksista ei voitu päätellä pilaantumisen etenemistä. Kun QIM® meressä kasvatetulle siialle on validoitu (Evira), valmista meressä kasvatetun siian QI-menetelmää voidaan hyödyntää jatkossa Suomen kalateollisuudessa ja -markkinoilla. Olisi hyvä, jos QIM® luotaisiin myös muille Suomen yleisimmille kauppakaloille, jotta pakkauksiin merkityt viimeiset käyttöpäivät perustuisivat yhteen yhteiseen menetelmään ja näin viimeisellä käyttöpäivällä olisi tieteellinen pohja.
Resumo:
An exact three-dimensional elasticity solution has been obtained for an infinitely long, thick transversely isotropic circular cylindrical shell panel, simply supported along the longitudinal edges and subjected to a radial patch load. Using a set of three displacement functions, the boundary value problem is reduced to Bessel's differential equation. Numerical results are presented for different thickness to mean radius ratios and semicentral angles of the shell panel. Classical and first-order shear deformation orthotropic shell theories have been examined in comparison with the present elasticity solution.
Resumo:
Transforming Growth Factors-beta (TGF-beta s) have been described in many vertebrate species of amphibians, aves and mammals. In this report we demonstrate the presence of TGF-beta 2 in pisces. TGF-beta 2 has been cloned from a fish, Cyrinus carpio, by RT-PCR using degenerate oligonucleotide primers. Sequence analysis of the amplified product and alignment of the deduced amino acid sequence with the human TGF-beta 2 amino acid sequence revealed 81% and 93% identity in the precursor and the mature regions, respectively. The northern blot analysis of fish heart RNA shows a major messenger RNA species of about 8.0 kb and two messages of very low abundance of about 5.0 kb and 4.0 kb. The identification of TGF-beta 2 isoform in Pisces and it's high degree of homology with the mammalian isoform suggests that among all TGF-beta isoforms, TGF-beta 2 is the most conserved during evolution. (C) 1997 Elsevier Science B.V.
Resumo:
Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.
Resumo:
Movement in animal groups is highly varied and ranges from seemingly disordered motion in swarms to coordinated aligned motion in flocks and schools. These social interactions are often thought to reduce risk from predators, despite a lack of direct evidence. We investigated risk-related selection for collective motion by allowing real predators ( bluegill sunfish) to hunt mobile virtual prey. By fusing simulated and real animal behavior, we isolated predator effects while controlling for confounding factors. Prey with a tendency to be attracted toward, and to align direction of travel with, near neighbors tended to form mobile coordinated groups and were rarely attacked. These results demonstrate that collective motion could evolve as a response to predation, without prey being able to detect and respond to predators.
Resumo:
Ionic polymer metal composites (IPMC) are a new class of smart materials that have attractive characteristics such as muscle like softness, low voltage and power consumption, and good performance in aqueous environments. Thus, IPMC’s provide promising application for biomimetic fish like propulsion systems. In this paper, we design and analyze IPMC underwater propulsor inspired from swimming of Labriform fishes. Different fish species in nature are source of inspiration for different biomimetic flapping IPMC fin design. Here, three fish species with high performance flapping pectoral fin locomotion is chosen and performance analysis of each fin design is done to discover the better configurations for engineering applications. In order to describe the behavior of an active IPMC fin actuator in water, a complex hydrodynamic function is used and structural model of the IPMC fin is obtained by modifying the classical dynamic equation for a slender beam. A quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to estimate the hydrodynamic performance of the flapping rectangular shape fin. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus and Sthethojulis trilineata, are analyzed with numerical simulations. Finally, a comparative study is performed to analyze the performance of three different biomimetic IPMC flapping pectoral fins.
Resumo:
Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.
Resumo:
Fish diversity (77 species) in the Aghanashini River estuary of the Indian west coast is linked to variable salinity conditions and zones I, II and III for high, medium and low salinity respectively. Zone I, the junction between Arabian Sea and the estuary, had all species in yearly succession due to freshwater conditions in monsoon to high salinity in pre-monsoon. The medium (zone II) and low (zone III) salinity mid and upstream portions had maximum of 67 and 39 fish species respectively. Maintenance of natural salinity regimes in estuary, among other ecological factors, is critical for its fish diversity.