933 resultados para packing geometry
Resumo:
The idea of buildings in harmony with nature can be traced back to ancient times. The increasing concerns on sustainability oriented buildings have added new challenges in building architectural design and called for new design responses. Sustainable design integrates and balances the human geometries and the natural ones. As the language of nature, it is, therefore, natural to assume that fractal geometry could play a role in developing new forms of aesthetics and sustainable architectural design. This paper gives a brief description of fractal geometry theory and presents its current status and recent developments through illustrative review of some fractal case studies in architecture design, which provides a bridge between fractal geometry and architecture design.
Resumo:
This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.
Resumo:
The products of reactions of the pharmaceutical amide carbamazepine (CBZ) with strong acids under aqueous conditions were investigated by both powder and single crystal X-ray diffraction. Despite previous claims to the contrary, it was found that salt forms with CBZ protonated at the amide O atom could be isolated from reactions with both HCl and HBr. These forms include the newly identified hydrate phase [CBZ(H)][Cl]·H O. Reactions with other mineral acids (HI and HBF ) gave ionic cocrystalline (ICC) forms (CBZ· [acridinium][I ]·2.5I and CBZ·[H O ] [BF ] ·H O) as well as the salt form CBZ·[CBZ(H)][BF ]·0.5H O. Reaction 2 4 3 2 5 2 0.25 4 0.25 2 4 2 of CBZ with a series of sulfonic acids also gave salt forms, namely, [CBZ(H)][O SC H ], [CBZ(H)][O SC H (OH)]· 3 6 5 3 6 4 0.5H O, [CBZ(H)] [O SCH CH SO ], and [CBZ(H)][O SC H (OH) (COOH)]·H O. CBZ and protonated CBZ(H) 2 2 3 2 2 3 3 6 3 2 moieties can be differentiated in the solid state both by changes to molecular geometry and by differing packing preferences
Resumo:
An exhibition that examines the legacy and future of Constructivist and Geometric art
Resumo:
By means of numerical simulations, we investigate magnetized stellar winds of pre-main-sequence stars. In particular, we analyze under which circumstances these stars will present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind. We show that the plasma-beta parameter (the ratio of thermal to magnetic energy densities) is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta(0) << 1. Using our self-consistent three-dimensional magnetohydrodynamics model, we estimate for these stellar winds the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter. In contrast to the findings of Lovelace et al., who estimated such timescales using the Weber and Davis model, our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on hot-Jupiters migration. Further simulations are necessary to investigate this result under more intense surface magnetic field strengths (similar to 2-3 kG) and higher coronal base densities, as well as in a tilted stellar magnetosphere.
Resumo:
We apply the master equation technique to calculate shot noise in a system composed of single level quantum dot attached to a normal metal lead and to a ferromagnetic lead (NM-QD-FM). It is known that this system operates as a spin-diode, giving unpolarized currents for forward bias and polarized current for reverse bias. This effect is observed when only one electron can tunnel at a time through the dot, due to the strong intradot Coulomb interaction. We find that the shot noise also presents a signature of this spin-diode effect, with a super-Poissonian shot noise for forward and a sub-Poissonian shot noise for reverse bias voltages. The shot noise thus can provide further experimental evidence of the spin-rectification in the NM-QD-FM geometry.
Resumo:
This paper presents the structural characterization of the indan derivative (+/-)-1-trans-3-(3,4-dichlorophenyl)-2,3-dihydro-1H-indene-1-carboxamide, which was unambiguously determined by X-ray diffraction (XRD) to be a racemate (R/S: 50/50) crystallizing in an achiral crystal structure (P2(1)/c, a = 9.3180(1) , b = 7.9070(2) , c = 19.7550(4) , beta = 103.250(1)A degrees, V = 1416.75(5) (3) and Z = 4). The diastereomers are related by the inversion symmetry and linked by H bond forming a dimer. The crystal packing is stabilized by hydrogen bonds, including the classical one responsible for the formation of centrosymmetric dimers, and non-classical ones involving C-H center dot center dot center dot O and C-H center dot center dot center dot pi-aryl interactions. The intra and intermolecular geometry of the title compound is compared to the (+/-)-1-trans-3-(3,4-dichlorophenyl)-2,3-dihydro-1H-indene-1-carboxylic acid one, which also present an achiral crystal structure from racemates (R/S: 50/50). The two indan derivatives crystallize in a very similar unit cell.
Resumo:
Mebendazole (MBZ) is a common benzimidazole anthelmintic that exists in three different polymorphic forms, A, B, and C. Polymorph C is the pharmaceutically preferred form due to its adequated aqueous solubility. No single crystal structure determinations depicting the nature of the crystal packing and molecular conformation and geometry have been performed on this compound. The crystal structure of mebendazole form C is resolved for the first time. Mebendazole form C crystallizes in the triclinic centrosymmetric space group and this drug is practically planar, since the least-squares methyl benzimidazolylcarbamate plane is much fitted on the forming atoms. However, the benzoyl group is twisted by 31(1)degrees from the benzimidazole ring, likewise the torsional angle between the benzene and carbonyl moieties is 27(1)degrees. The formerly described bends and other interesting intramolecular geometry features were viewed as consequence of the intermolecular contacts occurring within mebendazole C structure. Among these features, a conjugation decreasing through the imine nitrogen atom of the benzimidazole core and a further resonance path crossing the carbamate one were described. At last, the X-ray powder diffractogram of a form C rich mebendazole mixture was overlaid to the calculated one with the mebendazole crystal structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2336-2344, 2009
Resumo:
The crystalline structure of mangiferin (= 2-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxy-9H-xanthen-9-one; 1), a biologically active xanthenone C-glycoside, isolated from the stem bark of Mangifera indica (Anacardiaceae), was unambiguously determined by single-crystal X-ray diffraction (XRD). The crystal structure is summarized as follows: triclinic, P1, a = 7.6575(5), b = 11.2094(8), c = 11.8749(8) angstrom, alpha = 79.967(5), beta = 87.988(4), gamma = 72.164(4)degrees, V = 955.3(1) angstrom(3), and Z = 2. The structure also shows two molecules in the asymmetric unit cell and five crystallization H2O molecules. The packing is stabilized by several intermolecular H-bonds involving either the two symmetry-independent mangiferin molecules 1a and 1b, or the H2O ones.
Resumo:
A mixed integer continuous nonlinear model and a solution method for the problem of orthogonally packing identical rectangles within an arbitrary convex region are introduced in the present work. The convex region is assumed to be made of an isotropic material in such a way that arbitrary rotations of the items, preserving the orthogonality constraint, are allowed. The solution method is based on a combination of branch and bound and active-set strategies for bound-constrained minimization of smooth functions. Numerical results show the reliability of the presented approach. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The focus of study in this paper is the class of packing problems. More specifically, it deals with the placement of a set of N circular items of unitary radius inside an object with the aim of minimizing its dimensions. Differently shaped containers are considered, namely circles, squares, rectangles, strips and triangles. By means of the resolution of non-linear equations systems through the Newton-Raphson method, the herein presented algorithm succeeds in improving the accuracy of previous results attained by continuous optimization approaches up to numerical machine precision. The computer implementation and the data sets are available at http://www.ime.usp.br/similar to egbirgin/packing/. (C) 2009 Elsevier Ltd, All rights reserved.
Resumo:
In this work, we deal with the problem of packing (orthogonally and without overlapping) identical rectangles in a rectangle. This problem appears in different logistics settings, such as the loading of boxes on pallets, the arrangements of pallets in trucks and the stowing of cargo in ships. We present a recursive partitioning approach combining improved versions of a recursive five-block heuristic and an L-approach for packing rectangles into larger rectangles and L-shaped pieces. The combined approach is able to rapidly find the optimal solutions of all instances of the pallet loading problem sets Cover I and II (more than 50 000 instances). It is also effective for solving the instances of problem set Cover III (almost 100 000 instances) and practical examples of a woodpulp stowage problem, if compared to other methods from the literature. Some theoretical results are also discussed and, based on them, efficient computer implementations are introduced. The computer implementation and the data sets are available for benchmarking purposes. Journal of the Operational Research Society (2010) 61, 306-320. doi: 10.1057/jors.2008.141 Published online 4 February 2009
Resumo:
Adequate initial configurations for molecular dynamics simulations consist of arrangements of molecules distributed in space in such a way to approximately represent the system`s overall structure. In order that the simulations are not disrupted by large van der Waals repulsive interactions, atoms from different molecules Must keep safe pairwise distances. Obtaining Such a molecular arrangement can be considered it packing problem: Each type molecule must satisfy spatial constraints related to the geometry of the system, and the distance between atoms of different molecules Must be greater than some specified tolerance. We have developed a code able to pack millions of atoms. grouped in arbitrarily complex molecules, inside a variety of three-dimensional regions. The regions may be intersections of spheres, ellipses, cylinders, planes, or boxes. The user must provide only the structure of one molecule of each type and the geometrical constraints that each type of molecule must satisfy. Building complex mixtures, interfaces, solvating biomolecules in water, other solvents, or mixtures of solvents, is straight forward. In addition. different atoms belonging to the same molecule may also be restricted to different spatial regions, in Such a way that more ordered molecular arrangements call be built, as micelles. lipid double-layers, etc. The packing time for state-of-the-art molecular dynamics systems varies front a few seconds to a few Minutes in a personal Computer. The input files are simple and Currently compatible with PDB, Tinker, Molden, or Moldy coordinate files. The package is distributed as free software and call be downloaded front http://www.ime.unicamp.br/similar to martinez/packmol/. (C) 2009 Wiley Periodicals. Inc. J Comput Chem 30: 2157-2164, 2009
Resumo:
For a fixed family F of graphs, an F-packing in a graph G is a set of pairwise vertex-disjoint subgraphs of G, each isomorphic to an element of F. Finding an F-packing that maximizes the number of covered edges is a natural generalization of the maximum matching problem, which is just F = {K(2)}. In this paper we provide new approximation algorithms and hardness results for the K(r)-packing problem where K(r) = {K(2), K(3,) . . . , K(r)}. We show that already for r = 3 the K(r)-packing problem is APX-complete, and, in fact, we show that it remains so even for graphs with maximum degree 4. On the positive side, we give an approximation algorithm with approximation ratio at most 2 for every fixed r. For r = 3, 4, 5 we obtain better approximations. For r = 3 we obtain a simple 3/2-approximation, achieving a known ratio that follows from a more involved algorithm of Halldorsson. For r = 4, we obtain a (3/2 + epsilon)-approximation, and for r = 5 we obtain a (25/14 + epsilon)-approximation. (C) 2008 Elsevier B.V. All rights reserved.