945 resultados para numeri complessi riforma Gelmini storia della matematica TIMMS indicazioni nazionali
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The plan of Trieste is wanting.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references and indexes.
Resumo:
Text signed: Luca Beltrami.
Resumo:
Mode of access: Internet.
Resumo:
Questo lavoro di tesi nasce all’interno del nucleo di ricerca in didattica della fisica dell’Università di Bologna, coordinato dalla professoressa Olivia Levrini e che coinvolge docenti di matematica e fisica dei Licei, assegnisti di ricerca e laureandi. Negli ultimi anni il lavoro del gruppo si è concentrato sullo studio di una possibile risposta all'evidente e pressante difficoltà di certi docenti nell'affrontare gli argomenti di meccanica quantistica che sono stati introdotti nelle indicazioni Nazionali per il Liceo Scientifico, dovuta a cause di vario genere, fra cui l'intrinseca complessità degli argomenti e l'inefficacia di molti libri di testo nel presentarli in modo adeguato. In questo contesto, la presente tesi si pone l’obiettivo di affrontare due problemi specifici di formalizzazione matematica in relazione a due temi previsti dalle Indicazioni Nazionali: il tema della radiazione di corpo nero, che ha portato Max Planck alla prima ipotesi di quantizzazione, e l’indeterminazione di Heisenberg, con il cambiamento di paradigma che ha costituito per l’interpretazione del mondo fisico. Attraverso un confronto diretto con le fonti, si cercherà quindi di proporre un percorso in cui il ruolo del protagonista sarà giocato dagli aspetti matematici delle teorie analizzate e dal modo in cui gli strumenti della matematica hanno contribuito alla loro formazione, mantenendo un costante legame con le componenti didattiche. Proprio in quest'ottica, ci si accorgerà della forte connessione fra i lavori di Planck e Heisenberg e due aspetti fondamentali della didattica della matematica: l'interdisciplinarietà con la fisica e il concetto di modellizzazione. Il lavoro finale sarà quindi quello di andare ad analizzare, attraverso un confronto con le Indicazioni Nazionali per il Liceo Scientifico e con alcune esigenze emerse dagli insegnanti, le parti e i modi in cui la tesi risponde a queste richieste.
Resumo:
Editoriale
Resumo:
Bibliography: p.[7]-9.
Resumo:
Nella presente tesi sono riassunte le diverse posizioni epistemologiche riguardo alla relazione tra didattica e storia della matematica, insieme alle possibili funzioni di quest'ultima nell'attività scolastica. In particolare ci si è soffermati sull'opportunità di introdurre gli studenti ad un rapporto diretto con le fonti storiche. A tale scopo è stata condotta una sperimentazione in una classe di seconda Liceo, a cui sono stati proposti tre brani di diversi autori e secoli da esaminare in gruppo. Sono stati dettagliatamente descritti e successivamente analizzati i comportamenti messi in atto dagli studenti alla lettura delle fonti.
Resumo:
Questa tesi è incentrata sullo studio dei sistemi di numerazione. Dopo un'analisi storica dei vari contributi apportati dai diversi popoli, si mostrano alcune applicazioni didattiche elementari e alcuni giochi ricreativi. Per mostrare l'interesse di questi sistemi anche per la ricerca contemporanea, si passa a una trattazione più generale fino a giungere alla geometria frattale.
Resumo:
Sono studiati nel dettaglio, sia dal punto di vista matematico che con un certo inquadramento storico, i capitoli quinto e sesto del volume ''Le operazioni distributive e le loro applicazioni all'analisi'' di Salvatore Pincherle. La tesi si inserisce in un progetto più ampio di studio ed è già stata preceduta da un'altra tesi magistrale dedicata ai primi capitoli del libro.
Resumo:
Scopo della tesi è la trattazione dei logaritmi a partire dalla storia di quest'ultimi, al loro sviluppo, fino ad arrivare alle diverse applicazioni dei logaritmi in svariate discipline. La tesi è strutturata in quattro capitoli, nel primo dei quali si parte analizzando quali istanze teoriche e necessità pratiche abbiano preparato la strada all'introduzione dei logaritmi. Vengono riportati alcuni passi del testo più importante dedicato da Nepero ai logaritmi, Mirifici Logarithmorum Canonis Constructio, la modifica ad opera di Henry Briggs e la diffusione dei logaritmi in gran parte dell' Europa. Nel secondo capitolo viene evidenziato il legame tra i logaritmi e la geometria dell'iperbole per poi passare alla trattazione dei primi studi sulla curva logaritmica. Nel terzo capitolo viene esaminata la controversia tra Leibniz e Bernoulli sul significato da attribuire ai logaritmi dei numeri negativi soffermandosi su come Eulero uscì da una situazione di stallo proponendo una teoria dei logaritmi dei numeri complessi. Nel quarto ed ultimo capitolo vengono analizzati i diversi utilizzi della scala logaritmica ponendo soprattutto l'attenzione sul regolo calcolatore, arrivando infine a mostrare le applicazioni dei logaritmi in altre discipline.