949 resultados para non-uniform scale perturbation finite difference scheme
Resumo:
Wireless communications are widely used for various applications, requiring antennas with different features. Often, to achieve the desired radiation pattern, is necessary to employ antenna arrays, using non-uniform excitation on its elements. Power dividers can be used and the best known are the T-junction and the Wilkinson power divider, whose main advantage is the isolation between output ports. In this paper the impact of this isolation on the overall performance of a circularly polarized planar antenna array using non-uniform excitation is investigated. Results show a huge decrease of the array bandwidths either in terms of return loss or in polarization, without resistors. © 2014 IEEE.
Resumo:
Wireless communications had a great development in the last years and nowadays they are present everywhere, public and private, being increasingly used for different applications. Their application in the business of sports events as a means to improve the experience of the fans at the games is becoming essential, such as sharing messages and multimedia material on social networks. In the stadiums, given the high density of people, the wireless networks require very large data capacity. Hence radio coverage employing many small sized sectors is unavoidable. In this paper, an antenna is designed to operate in the Wi-Fi 5GHz frequency band, with a directive radiation pattern suitable to this kind of applications. Furthermore, despite the large bandwidth and low losses, this antenna has been developed using low cost, off-the-shelf materials without sacrificing quality or performance, essential to mass production. © 2015 EurAAP.
Resumo:
Inhalt dieser Arbeit ist ein Verfahren zur numerischen Lösung der zweidimensionalen Flachwassergleichung, welche das Fließverhalten von Gewässern, deren Oberflächenausdehnung wesentlich größer als deren Tiefe ist, modelliert. Diese Gleichung beschreibt die gravitationsbedingte zeitliche Änderung eines gegebenen Anfangszustandes bei Gewässern mit freier Oberfläche. Diese Klasse beinhaltet Probleme wie das Verhalten von Wellen an flachen Stränden oder die Bewegung einer Flutwelle in einem Fluss. Diese Beispiele zeigen deutlich die Notwendigkeit, den Einfluss von Topographie sowie die Behandlung von Nass/Trockenübergängen im Verfahren zu berücksichtigen. In der vorliegenden Dissertation wird ein, in Gebieten mit hinreichender Wasserhöhe, hochgenaues Finite-Volumen-Verfahren zur numerischen Bestimmung des zeitlichen Verlaufs der Lösung der zweidimensionalen Flachwassergleichung aus gegebenen Anfangs- und Randbedingungen auf einem unstrukturierten Gitter vorgestellt, welches in der Lage ist, den Einfluss topographischer Quellterme auf die Strömung zu berücksichtigen, sowie in sogenannten \glqq lake at rest\grqq-stationären Zuständen diesen Einfluss mit den numerischen Flüssen exakt auszubalancieren. Basis des Verfahrens ist ein Finite-Volumen-Ansatz erster Ordnung, welcher durch eine WENO Rekonstruktion unter Verwendung der Methode der kleinsten Quadrate und eine sogenannte Space Time Expansion erweitert wird mit dem Ziel, ein Verfahren beliebig hoher Ordnung zu erhalten. Die im Verfahren auftretenden Riemannprobleme werden mit dem Riemannlöser von Chinnayya, LeRoux und Seguin von 1999 gelöst, welcher die Einflüsse der Topographie auf den Strömungsverlauf mit berücksichtigt. Es wird in der Arbeit bewiesen, dass die Koeffizienten der durch das WENO-Verfahren berechneten Rekonstruktionspolynome die räumlichen Ableitungen der zu rekonstruierenden Funktion mit einem zur Verfahrensordnung passenden Genauigkeitsgrad approximieren. Ebenso wird bewiesen, dass die Koeffizienten des aus der Space Time Expansion resultierenden Polynoms die räumlichen und zeitlichen Ableitungen der Lösung des Anfangswertproblems approximieren. Darüber hinaus wird die wohlbalanciertheit des Verfahrens für beliebig hohe numerische Ordnung bewiesen. Für die Behandlung von Nass/Trockenübergangen wird eine Methode zur Ordnungsreduktion abhängig von Wasserhöhe und Zellgröße vorgeschlagen. Dies ist notwendig, um in der Rechnung negative Werte für die Wasserhöhe, welche als Folge von Oszillationen des Raum-Zeit-Polynoms auftreten können, zu vermeiden. Numerische Ergebnisse die die theoretische Verfahrensordnung bestätigen werden ebenso präsentiert wie Beispiele, welche die hervorragenden Eigenschaften des Gesamtverfahrens in der Berechnung herausfordernder Probleme demonstrieren.
Resumo:
A finite-difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to a dam-break problem with cylindrical symmetry.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the Euler equations for the compressible flow of an ideal gas. A linearised Riemann problem is defined, and a scheme based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to the usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. The scheme is applied to a shock tube problem and a blast wave problem. Each approximate solution compares well with those given by other schemes, and for the shock tube problem is in agreement with the exact solution.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.
Resumo:
Abstract A finite difference scheme is presented for the solution of the two-dimensional shallow water equations in steady, supercritical flow. The scheme incorporates numerical characteristic decomposition, is shock capturing by design and incorporates space-marching as a result of the assumption that the flow is wholly supercritical in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
A finite difference scheme is presented for the solution of the two-dimensional equations of steady, supersonic, isentropic flow. The scheme incorporates numerical characteristic decomposition, is shock-capturing by design and incorporates space marching as a result of the assumption that the flow is wholly supersonic in at least one space dimension. Results are shown for problems involving oblique hydraulic jumps and reflection from a wall.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow water equations in open channels. A linearised problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a problem of flow in a river whose geometry induces a region of supercritical flow.
Resumo:
A second order accurate, characteristic-based, finite difference scheme is developed for scalar conservation laws with source terms. The scheme is an extension of well-known second order scalar schemes for homogeneous conservation laws. Such schemes have proved immensely powerful when applied to homogeneous systems of conservation laws using flux-difference splitting. Many application areas, however, involve inhomogeneous systems of conservation laws with source terms, and the scheme presented here is applied to such systems in a subsequent paper.
Resumo:
This paper presents results for thermal comfort assessment in non-uniform thermal environments. Three types of displacement ventilation (DV) units that created stratified condition in an environmental test chamber have been selected to carry out the thermal comfort assessment: a flat diffuser (DV1), semi-circular diffuser (DV2), and floor swirl diffuser (DV3). The CBE (Center for the Built Environment at Berkeley) comfort model was implemented in this study to assess the occupant’s thermal comfort for the three DV types. The CBE model predicted the occupant’s mean skin as well as local skin temperatures very well when compared with measurements found in the literature, while it underestimated the occupant’s core temperature. The predicted occupant’s thermal sensation and thermal comfort for the case of (DV2) were the best. Therefore, the semi-circular diffuser (DV2) provided better thermal comfort for the occupant in comparison with the other two DV types.
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
The effect of spatial and temporal variations in the radiative damping rate on the response to an imposed forcing or diabatic heating is examined in a zonal-mean model of the middle atmosphere. Attention is restricted to the extratropics, where a linear approach is viable. It is found that regions with weak radiative damping rates are more sensitive in terms of temperature to the remote influence of the diabatic circulation. The delay in the response in such regions can mean that ‘downward’ control is not achieved on seasonal time-scales. A seasonal variation in the radiative damping rate modulates the evolution of the response and leaves a transient-like signature in the annual mean temperature field. Several idealized examples are considered, motivated by topical questions. It is found that wave drag outside the polar vortex can significantly affect the temperatures in its interior, so that high-latitude, high-altitude gravity-wave drag is not the only mechanism for warming the southern hemisphere polar vortex. Diabatic mass transport through the 100 hPa surface is found to lag the seasonal evolution of the wave drag that drives the transport, and thus cannot be considered to be in the downward control regime. On the other hand, the seasonal variation of the radiative damping rate is found to make only a weak contribution to the annual mean temperature increase that has been observed above the ozone hole. Copyright © 2002 Royal Meteorological Society.
Resumo:
The effects of a non-uniform wind field along the path of a scintillometer are investigated. Theoretical spectra are calculated for a range of scenarios where the crosswind varies in space or time and compared to the ‘ideal’ spectrum based on a constant uniform crosswind. It is verified that the refractive-index structure parameter relation with the scintillometer signal remains valid and invariant for both spatially and temporally-varying crosswinds. However, the spectral shape may change significantly preventing accurate estimation of the crosswind speed from the peak of the frequency spectrum and retrieval of the structure parameter from the plateau of the power spectrum. On comparison with experimental data, non-uniform crosswind conditions could be responsible for previously unexplained features sometimes seen in observed spectra. By accounting for the distribution of crosswind, theoretical spectra can be generated that closely replicate the observations, leading to a better understanding of the measurements. Spatial variability of wind speeds should be expected for paths other than those that are parallel to the surface and over flat, homogenous areas, whilst fluctuations in time are important for all sites.