972 resultados para nicotine C-oxidase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA barcoding has the potential to overcome taxonomic challenges in biological community assessments. However, fulfilling that potential requires successful amplification of a large and unbiased portion of the community. In this study, we attempted to identify mitochondrial gene cytochrome c oxidase I (COI) barcodes from 1024 benthic invertebrate specimens belonging to 54 taxa from low salinity environments of the Mira estuary and Torgal riverside (SW Portugal). Up to 17 primer pairs and several reaction conditions were attempted among specimens from all taxa, with amplification success defined as a single band of approximately 658 bp visualized on a pre-cast agarose gel, starting near the 5' end of the COI gene and suitable for sequencing. Amplification success was achieved for 99.6% of the 54 taxa, though no single primer was successful for more than 88.9% of the taxa. However, only 68.5% of the specimens within these taxa successfully amplified. Inhibition factors resulting from a non-purified DNA extracted and inexistence of species-specific primers for COI were pointed as the main reasons for an unsuccessful amplification. These results suggest that DNA barcoding can be an effective tool for application in low salinity environments where taxa such as chironomids and oligochaetes are challenging for morphological identification. Nevertheless, its implementation is not simple, as methods are still being standardized and multiple species

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Marine healthy ecosystems support life on Earth and human well-being thanks to their biodiversity, which is proven to decline mainly due to anthropogenic stressors. Monitoring how marine biodiversity changes trough space and time is needed to properly define and enroll effective actions towards habitat conservation and preservation. This is particularly needed in those areas that are very rich in species compared to their low surface extension and are characterized by strong anthropic pressures, such as the Mediterranean Sea. Subtidal rocky benthic Mediterranean habitats have a complex structural architecture, hosting a panoply of tiny organisms (cryptofauna) that inhabit crevices and caves, but that are still unknown. Different artificial standardized sampling structures (SSS) and methods have been developed and employed to characterize the cryptofauna, allowing for data replicability and comparability across regions. Organisms growing on these artificial structures can be identified coupling morphological taxonomy and DNA barcoding and metabarcoding. The metabarcoding allows for the identification of organisms in a bulk sample without morphological analysis, and it is based on comparing the genetic similarities of the assessed organisms with barcoding sequences present in online barcoding repositories. Nevertheless, barcoded species nowadays represent only a small portion of known species, and barcoding reference databases are not always curated and updated on a regular basis. In this Thesis I used an integrative approach to characterize benthic marine biodiversity, specifically coupling morphological and molecular techniques with the employment of SSS. Moreover, I upgraded the actual status of COI (cytochrome c oxidase subunit I) barcoding of marine metazoans, and I built a customized COI barcoding reference database for metabarcoding studies on temperate biogenic reefs. This work implemented the knowledge about diversity of Mediterranean marine communities, laying the groundworks for monitoring marine and environmental changes that will occur in the next future as consequences of anthropic and climate threats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct oxidation of sulfite to sulfate occurs in various photo- and chemotrophic sulfur oxidizing microorganisms as the final step in the oxidation of reduced sulfur compounds and is catalyzed by sulfite:cytochrome c oxidoreductase (EC 1.8.2.1), Here we show that the enzyme from Thiobacillus novellus is a periplasmically located alpha beta heterodimer, consisting of a 40.6-kDa subunit containing a molybdenum cofactor and an 8.8-kDa monoheme cytochrome c(552) smbunit (midpoint redox potential, Em(8.0) = +280 mV), The organic component of the molybdenum cofactor was identified as molybdopterin contained in a 1:1 ratio to the Mo content of the enzyme. Electron paramagnetic resonance spectroscopy revealed the presence of a sulfite-inducible Mo(V) signal characteristic of sulfite:acceptor oxidoreductases. However, pH-dependent changes in the electron paramagnetic resonance signal were not detected. Kinetic studies showed that the enzyme exhibits a ping-pong mechanism involving two reactive sites. K-m values for sulfite and cytochrome c(550) were determined to be 27 and 4 mu M, respectively; the enzyme was found to be reversibly inhibited by sulfate and various buffer ions. The sorAB genes, which encode the enzyme, appear to form an operon, which is preceded by a putative extracytoplasmic function-type promoter and contains a hairpin loop termination structure downstream of sorB. While SorA exhibits significant similarities to known sequences of eukaryotic and bacterial sulfite:acceptor oxidoreductases, SorB does not appear to be closely related to any known c-type cytochromes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A composição química e bioquímica da manga, varia de acordo com as condições da cultura, variedade e estágio de maturação, geralmente contendo alto conteúdo de ácido ascórbico. Com o objetivo de estabelecer o papel da ascorbato oxidase [E.C.1.10.3.3], sobre os níveis de ácido ascórbico durante o processo de amadurecimento de manga (Mangífera índica L.) var. Haden, foram analisadas amostras da fruta correspondentes aos estágios verde maturo (zero) e armazenadas por 2, 4, 6, 8, 10, 12 e 14 dias a 20 ± 2oC. As amostras foram obtidas das polpas cortadas em pequenos cubos de aproximadamente 8 cm3 de 8 mangas com textura sem diferença significativa entre elas, medidas com auxílio de um penetrômetro Magness-Taylor. Em cada amostra foi determinada atividade de ascorbato oxidase para verificar sua participação em possíveis quedas de ácido ascórbico durante o amadurecimento das frutas. Também foram determinados periodicamente o teor de ácido ascórbico e o perfil sensorial durante o período de amadurecimento. A atividade enzimática foi determinada espectrofotometricamente a 245 nm 30oC, o ácido ascórbico foi analisado de acordo com a metodologia da AOAC modificada e a análise sensorial através de análise descritiva quantitativa. Os dados da análise sensorial foram analisados através de análise de variância (ANOVA), testes de médias de Tukey, análise de componentes principais e análise discriminante por passos. Durante o amadurecimento, a atividade da ascorbato oxidase aumentou e o teor de ácido ascórbico diminuiu, havendo significativa (p£0,05) correlação linear negativa (r=-0,98). Os termos descritores para a manga foram: sabor característico, aroma característico, acidez, adstringência, coloração amarela da polpa, doçura e suculência. O perfil sensorial apresentou significativa melhora com o amadurecimento. Todos os atributos sensoriais aumentaram significativamente (p£0,05) durante o amadurecimento das mangas, exceto acidez e adstringência.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increasing citrate concentration, at constant ionic strength (30 mM) decreases the rate of cytochrome ~ reduction by ascorbate. This effect is also seen at both high (600 mM) and low (19 mM) ionic strengths, and the Kapp for citrate increases with increasing ionic strength. Citrate binds d both ferri -and ferrocytochrome ~, but with a lower affinity for the latter form (Kox . .red d = 2 mM, Kd = 8 mM) as shown by an equilibrium assay with N,N,N',N', Tetramethyl E- phenylenediamine. The reaction of ferricytochrome ~with cyanide is also altered in the presence of citrate: citrate increases the K~PP for cyanide. Column chromatography of cytochrome ~-cytochrome oxidase mixtures shows citrate increases the dissociation constant of the complex. These results are confirmed in kinetic assays for the "loose"site (Km = 20 pM) only. The effect of increasing citrate observable at the "tight" site (Km = 0.25 pM) is on the turnover number and not on the K . These results suggest a mechanism m where anion binding to cytochrome £ at the tight site affects the equilibrium between two forms of cytochrome c bound cytochrome oxidase: an active and an inactive one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chemical and biochemical composition of mango, varies according to the cultivation conditions, variety and maturation state, generally containing a high level of ascorbic acid. In order to establish the correlation between the activity of the ascorbate oxidase [E.C.1.10.3.3], and ascorbic acid level in the ripening process of the Haden mango (Mangífera índica L.), sample of the fruits related to hard green stage (zero), 2, 4, 6, 8, 10, 12 and 14 days stored at 20 ± 2oC, were tested. The samples were obtained by cutting small cubes of 8 cm3 from pulps of 8 mangoes with texture without significant difference (p£0.05) at Magness-Taylor pressure tester scale. In each sample the activity of ascorbate oxidase was followed, in order to check its participation in possible substrate losses during the ripening fruits. The ascorbic acid level and sensory profile also was determined periodically during the ripening period. The enzymatic activity was spectrophotometrically determined at 245 nm and 30oC. The ascorbic acid was analyzed according modified AOAC methodology, and sensory analysis by descriptive quantitative analysis. Data were analyzed using correlation analysis, analysis of variance (ANOVA), Tukey's test, principal component analysis and stepwise discriminant analysis. During the ripening, the ascorbate oxidase activity increased (from 0 to 5.0 x 10-1 U/ml) and the ascorbic acid level decreased (from 209.3 mg to 110.0 mg per 100g of pulp), showing a significant (p£0.05) inverse linear correlation (r=-0.98). The descriptors terms for mangoes were: characteristic flavor, characteristic aroma, sourness, astringency, yellow coloration of pulp, sweetness and succulence. The sensory profile presented significant improvement during ripening. All sensory attributes increased significantly (p£0.05) except sourness and astringency, wich decreased during the ripening of mangoes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day] pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs. (Hypertension. 2012; 59: 1263-1271.). Online Data Supplement

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Caenorhabditis elegans has recently been developed as a model system to study both pathogen virulence mechanisms and host defense responses. We have shown that C. elegans produces reactive oxygen species (ROS) in response to exposure to the important Gram-positive, noscomial pathogen, Enterococcus faecalis. We have also shown evidence of oxidative stress and upregulation of stress response after exposure to the pathogen. As in mammalian systems, this work shows that production of ROS for innate immune functions occurs via an NADPH oxidase. Specifically, reducing expression of a dual oxidase, Ce-duox1/BLI-3 causes a decrease in ROS production in response to E. faecalis. We also present evidence that reduction of expression of Ce-duox1/BLI-3 increases susceptibility to this pathogen, specifically when expression is reduced in the intestine and the hypodermis. This dual oxidase has previously been localized to the hypodermis, but we show that it is additionally localized to the intestine of C. elegans. To further demonstrate the protective effects of the pathogen-induced ROS production, we demonstrate that antioxidants that scavenge ROS, increase the sensitivity of the nematode to the infection, in stark contrast to their longevity-promoting effects under non-pathogenic conditions. In conclusion, we postulate that the generation of ROS by NADPH oxidases in the barrier epithelium is an ancient, highly conserved innate immune defense mechanism.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have cloned the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene. The sterol methyl oxidase performs the first of three enzymic steps required to remove the two C-4 methyl groups leading to cholesterol (animal), ergosterol (fungal), and stigmasterol (plant) biosynthesis. An ergosterol auxotroph, erg25, which fails to demethylate and concomitantly accumulates 4,4-dimethylzy-mosterol, was isolated after mutagenesis. A complementing clone consisting of a 1.35-kb Dra I fragment encoded a 309-amino acid polypeptide (calculated molecular mass, 36.48 kDa). The amino acid sequence shows a C-terminal endoplasmic reticulum retrieval signal KKXX and three histidine-rich clusters found in eukaryotic membrane desaturases and in a bacterial alkane hydroxylase and xylene monooxygenase. The sterol profile of an ERG25 disruptant was consistent with the erg25 allele obtained by mutagenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several lines of evidence indicate that the use of stimulant drugs, including methylphenidate (MPD), increases tobacco smoking. This has raised concerns that MPD use during adolescence could facilitate nicotine abuse. Preclinical studies have shown that repeated treatment with an addictive drug produces sensitization to that drug and usually cross-sensitization to other drugs. Behavioral sensitization has been implicated in the development of drug addiction. We examined whether repeated oral MPD administration during adolescence could induce behavioral sensitization to MPD and long-lasting cross-sensitization to nicotine. Adolescent male Wistar rats were treated orally with 10 mg/kg MPD or saline (SAL) from postnatal day (PND) 27 to 33. To evaluate behavioral sensitization to MPD in adolescent rats (PND 39), the SAL pretreated group was subdivided into two groups that received intragastric SAL (1.0 mL/kg) or MPD (10 mg/kg); MPD pretreated rats received MPD (10 mg/kg). Cross-sensitization was evaluated on PND 39 or PND 70 (adulthood). To this end, SAL- and MPD-pretreated groups received subcutaneous injections of SAL (1.0 mL/kg) or nicotine (0.4 mg/kg). All groups had 8 animals. Immediately after injections, locomotor activity was determined. The locomotor response to MPD challenge of MPD-pretreated rats was not significantly different from that of the SAL-pretreated group. Moreover, the locomotor response of MPD-pretreated rats to nicotine challenge was not significantly different from that of the SAL-pretreated group. This lack of sensitization and cross-sensitization suggests that MPD treatment during adolescence does not induce short- or long-term neuroadaptation in rats that could increase sensitivity to MPD or nicotine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the valuable contributions of robotics and high-throughput approaches to protein crystallization, the role of an experienced crystallographer in the evaluation and rationalization of a crystallization process is still crucial to obtaining crystals suitable for X-ray diffraction measurements. In this work, the difficult task of crystallizing the flavoenzyme l-amino-acid oxidase purified from Bothrops atrox snake venom was overcome by the development of a protocol that first required the identification of a non-amorphous precipitate as a promising crystallization condition followed by the implementation of a methodology that combined crystallization in the presence of oil and seeding techniques. Crystals were obtained and a complete data set was collected to 2.3 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 73.64, b = 123.92, c = 105.08 A, beta = 96.03 degrees. There were four protein subunits in the asymmetric unit, which gave a Matthews coefficient V (M) of 2.12 A3 Da-1, corresponding to 42% solvent content. The structure has been solved by molecular-replacement techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to oxygen may induce a lack of functionality of probiotic dairy foods because the anaerobic metabolism of probiotic bacteria compromises during storage the maintenance of their viability to provide benefits to consumer health. Glucose oxidase can constitute a potential alternative to increase the survival of probiotic bacteria in yogurt because it consumes the oxygen permeating to the inside of the pot during storage, thus making it possible to avoid the use of chemical additives. This research aimed to optimize the processing of probiotic yogurt supplemented with glucose oxidase using response surface methodology and to determine the levels of glucose and glucose oxidase that minimize the concentration of dissolved oxygen and maximize the Bifidobacterium longum count by the desirability function. Response surface methodology mathematical models adequately described the process, with adjusted determination coefficients of 83% for the oxygen and 94% for the B. longum. Linear and quadratic effects of the glucose oxidase were reported for the oxygen model, whereas for the B. longum count model an influence of the glucose oxidase at the linear level was observed followed by the quadratic influence of glucose and quadratic effect of glucose oxidase. The desirability function indicated that 62.32 ppm of glucose oxidase and 4.35 ppm of glucose was the best combination of these components for optimization of probiotic yogurt processing. An additional validation experiment was performed and results showed acceptable error between the predicted and experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is a thermodimorphic human pathogenic fungus that causes paracoccidioidomycosis (PCM), which is the most prevalent systemic mycosis in Latin America. Differentiation from the mycelial to the yeast form (M-to-Y) is an essential step for the establishment of PCM. We evaluated the involvement of mitochondria and intracellular oxidative stress in M-to-Y differentiation. M-to-Y transition was delayed by the inhibition of mitochondrial complexes III and IV or alternative oxidase (AOX) and was blocked by the association of AOX with complex III or IV inhibitors. The expression of P. brasiliensis aox (Pbaox) was developmentally regulated through M-to-Y differentiation, wherein the highest levels were achieved in the first 24 h and during the yeast exponential growth phase; Pbaox was upregulated by oxidative stress. Pbaox was cloned, and its heterologous expression conferred cyanide-resistant respiration in Saccharomyces cerevisiae and Escherichia coli and reduced oxidative stress in S. cerevisiae cells. These results reinforce the role of PbAOX in intracellular redox balancing and demonstrate its involvement, as well as that of other components of the mitochondrial respiratory chain complexes, in the early stages of the M-to-Y differentiation of P. brasiliensis.