992 resultados para multiple secondary
Resumo:
Neutrino telescopes with cubic kilometer volumes have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering.
Resumo:
Background: Identifying local similarity between two or more sequences, or identifying repeats occurring at least twice in a sequence, is an essential part in the analysis of biological sequences and of their phylogenetic relationship. Finding such fragments while allowing for a certain number of insertions, deletions, and substitutions, is however known to be a computationally expensive task, and consequently exact methods can usually not be applied in practice. Results: The filter TUIUIU that we introduce in this paper provides a possible solution to this problem. It can be used as a preprocessing step to any multiple alignment or repeats inference method, eliminating a possibly large fraction of the input that is guaranteed not to contain any approximate repeat. It consists in the verification of several strong necessary conditions that can be checked in a fast way. We implemented three versions of the filter. The first is simply a straightforward extension to the case of multiple sequences of an application of conditions already existing in the literature. The second uses a stronger condition which, as our results show, enable to filter sensibly more with negligible (if any) additional time. The third version uses an additional condition and pushes the sensibility of the filter even further with a non negligible additional time in many circumstances; our experiments show that it is particularly useful with large error rates. The latter version was applied as a preprocessing of a multiple alignment tool, obtaining an overall time (filter plus alignment) on average 63 and at best 530 times smaller than before (direct alignment), with in most cases a better quality alignment. Conclusion: To the best of our knowledge, TUIUIU is the first filter designed for multiple repeats and for dealing with error rates greater than 10% of the repeats length.
Resumo:
An analytical procedure for multiple standard additions of arsenic species using sequential injection analysis (SIA) is proposed for their quantification in seafood extracts. SIA presented flexibility for generating multiple specie standards at the ng mL(-1) concentration level by adding different volumes of As(III), As(V), monomethylarsonic (MMA) and dimethylarsinic (DMA) to the sample. The mixed sample plus standard solutions were delivered from SIA to fill the HPLC injection loop. Subsequently, As species were separated by HPLC and analyzed by atomic fluorescence spectrometry (AFS). The proposed system comprised two independently controlled modules, with the HPLC loop acting as the intermediary device. The analytical frequency was enhanced by combining the actions of both modules. While the added sample was flowing through the chromatographic column towards the detection system, the SIA program started performing the standard additions to another sample. The proposed method was applied to spoiled seafood extracts. Detection limits based on 3 sigma for As(III), As(V), MMA and DMA were 0.023, 0.39, 0.45 and 1.0 ng mL(-1), respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Inductively coupled plasma optical emission spectrometers (ICP DES) allow fast simultaneous measurements of several spectral lines for multiple elements. The combination of signal intensities of two or more emission lines for each element may bring such advantages as improvement of the precision, the minimization of systematic errors caused by spectral interferences and matrix effects. In this work, signal intensities for several spectral lines were combined for the determination of Al, Cd, Co, Cr, Mn, Pb, and Zn in water. Afterwards, parameters for evaluation of the calibration model were calculated to select the combination of emission lines leading to the best accuracy (lowest values of PRESS-Predicted error sum of squares and RMSEP-Root means square error of prediction). Limits of detection (LOD) obtained using multiple lines were 7.1, 0.5, 4.4, 0.042, 3.3, 28 and 6.7 mu g L(-1) (n = 10) for Al, Cd. Co, Cr, Mn, Pb and Zn, respectively, in the presence of concomitants. On the other hand, the LOD established for the most intense emission line were 16. 0.7, 8.4, 0.074. 23, 26 and 9.6 mu g L(-1) (n = 10) for these same elements in the presence of concomitants. The accuracy of the developed procedure was demonstrated using water certified reference material. The use of multiple lines improved the sensitivity making feasible the determination of these analytes according to the target values required for the current environmental legislation for water samples and it was also demonstrated that measurements in multiple lines can also be employed as a tool to verify the accuracy of an analytical procedure in ICP DES. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Secondary forests are an increasingly common feature in tropical landscapes worldwide and understanding their regeneration is necessary to design effective restoration strategies. It has previously been shown that the woody species community in secondary forests can follow different successional pathways according to the nature of past human activities in the area, yet little is known about patterns of herbaceous species diversity in secondary forests with different histories of land use. We compared the diversity and abundance of herbaceous plant communities in two types of Central Amazonian secondary forests-those regenerating on pastures created by felling and burning trees and those where trees were felled only. We also tested if plant density and species richness in secondary forests are related to proximity to primary forest. In comparison with primary forest sites, forests regenerating on non-burned habitats had lower herbaceous plant density and species richness than those on burned ones. However, species composition and abundance in non-burned stands were more similar to those of primary forest, whereas several secondary forest specialist species were found in burned stands. In both non-burned and burned forests, distance from the forest edge was not related to herbaceous density and species richness. Overall, our results suggest that the natural regeneration of herbaceous species in secondary tropical forests is dependent on a site`s post-clearing treatment. We recommend evaluating the land history of a site prior to developing and implementing a restoration strategy, as this will influence the biological template on which restoration efforts are overlaid.
Resumo:
Secondary neurodegeneration takes place in the surrounding tissue of spinal cord trauma and modifies substantially the prognosis, considering the small diameter of its transversal axis. We analyzed neuronal and glial responses in rat spinal cord after different degree of contusion promoted by the NYU Impactor. Rats were submitted to vertebrae laminectomy and received moderate or severe contusions. Control animals were sham operated. After 7 and 30 days post surgery, stereological analysis of Nissl staining cellular profiles showed a time progression of the lesion volume after moderate injury, but not after severe injury. The number of neurons was not altered cranial to injury. However, same degree of diminution was seen in the caudal cord 30 days after both severe and moderate injuries. Microdensitometric image analysis demonstrated a microglial reaction in the white matter 30 days after a moderate contusion and showed a widespread astroglial reaction in the white and gray matters 7 days after both severities. Astroglial activation lasted close to lesion and in areas related to Wallerian degeneration. Data showed a more protracted secondary degeneration in rat spinal cord after mild contusion, which offered an opportunity for neuroprotective approaches. Temporal and regional glial responses corroborated to diverse glial cell function in lesioned spinal cord. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A Raman scattering study on multiple phase generation in silicon submitted to successive Vickers microindentation cycles, in different crystallographic orientations, was performed. The microindentations were perfon-ned in a virgin single crystal (100)-oriented surface, in the [001] and [011] directions. The results indicated that the formation of multiple phases by cyclic microindentation may depend on the crystallographic direction and number of successive cycles: the onset of several different structural phases was detected after the third cycle for the [001] direction and only after 15 cycles for the [011] direction, indicating that there is a crystallographic orientation dependence for multiple phase generation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a boundary element method (BEM) model that is used for the analysis of multiple random crack growth by considering linear elastic fracture mechanics problems and structures subjected to fatigue. The formulation presented in this paper is based on the dual boundary element method, in which singular and hyper-singular integral equations are used. This technique avoids singularities of the resulting algebraic system of equations, despite the fact that the collocation points coincide for the two opposite crack faces. In fracture mechanics analyses, the displacement correlation technique is applied to evaluate stress intensity factors. The maximum circumferential stress theory is used to evaluate the propagation angle and the effective stress intensity factor. The fatigue model uses Paris` law to predict structural life. Examples of simple and multi-fractured structures loaded until rupture are considered. These analyses demonstrate the robustness of the proposed model. In addition, the results indicate that this formulation is accurate and can model localisation and coalescence phenomena. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Rotifera density, biomass, and secondary production on two marginal lakes of Paranapanema River were compared after the recovery of hydrologic connectivity with the river (Sao Paulo State, Brazil). Daily samplings were performed in limnetic zone of both lakes during the rainy season immediately after lateral inflow of water and, in the dry period, six months after hydrologic connectivity recovery. In order to identify the factors that affect rotifer population dynamics, lake water level, volume, depth, temperature, transparency, dissolved oxygen, pH, alkalinity, conductivity, suspended solids, nutrients, and chlorophyll-a were determined. Variations of water physical and chemical factors that affect rotifer population were related to the lake-river degree of connection and to water level rising after drought. The water lateral inflow from the river resulted in an increase in lake water volume, depth, and transparency and a decrease in water pH, alkalinity, and suspended solids. The lake with the wider river connection, more frequent biota exchange, and larger amount of particulate and dissolved materials was richer and more diverse, while rotifer density, biomass, and productivity were lower in both periods studied. Density, biomass, and secondary production were higher in the lake with the smaller river connection and the higher physical and chemical stability. Our results show that the connectivity affects the limnological stability, associated to seasonality. Stable conditions, caused by low connectivity in dry periods, were related with high density, biomass and secondary production. Conversely, instability conditions in rainy periods were associated to elevated richness and diversity values, caused by exchange biota due to higher connectivity. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
The aim of this work is to identify key factors of a sustainable urban mobility concept in a particular context. A multiple criteria decision analysis method was developed to identify the main variables associated to the concept. Looking at the results obtained in 11 cities of the five Brazilian regions, we conclude that the method is able to capture the different views and approaches discussed in the formulation of the mobility concept. Therefore, it can be used as a starting point for the formulation of public policies and also in the development of tools designed for monitoring the mobility conditions. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An exact non-linear formulation of the equilibrium of elastic prismatic rods subjected to compression and planar bending is presented, electing as primary displacement variable the cross-section rotations and taking into account the axis extensibility. Such a formulation proves to be sufficiently general to encompass any boundary condition. The evaluation of critical loads for the five classical Euler buckling cases is pursued, allowing for the assessment of the axis extensibility effect. From the quantitative viewpoint, it is seen that such an influence is negligible for very slender bars, but it dramatically increases as the slenderness ratio decreases. From the qualitative viewpoint, its effect is that there are not infinite critical loads, as foreseen by the classical inextensible theory. The method of multiple (spatial) scales is used to survey the post-buckling regime for the five classical Euler buckling cases, with remarkable success, since very small deviations were observed with respect to results obtained via numerical integration of the exact equation of equilibrium, even when loads much higher than the critical ones were considered. Although known beforehand that such classical Euler buckling cases are imperfection insensitive, the effect of load offsets were also looked at, thus showing that the formulation is sufficiently general to accommodate this sort of analysis. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.
Resumo:
Void fraction sensors are important instruments not only for monitoring two-phase flow, but for furnishing an important parameter for obtaining flow map pattern and two-phase flow heat transfer coefficient as well. This work presents the experimental results obtained with the analysis of two axially spaced multiple-electrode impedance sensors tested in an upward air-water two-phase flow in a vertical tube for void fraction measurements. An electronic circuit was developed for signal generation and post-treatment of each sensor signal. By phase shifting the electrodes supplying the signal, it was possible to establish a rotating electric field sweeping across the test section. The fundamental principle of using a multiple-electrode configuration is based on reducing signal sensitivity to the non-uniform cross-section void fraction distribution problem. Static calibration curves were obtained for both sensors, and dynamic signal analyses for bubbly, slug, and turbulent churn flows were carried out. Flow parameters such as Taylor bubble velocity and length were obtained by using cross-correlation techniques. As an application of the void fraction tested, vertical flow pattern identification could be established by using the probability density function technique for void fractions ranging from 0% to nearly 70%.
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
In many engineering applications, the time coordination of geographically separated events is of fundamental importance, as in digital telecommunications and integrated digital circuits. Mutually connected (MC) networks are very good candidates for some new types of application, such as wireless sensor networks. This paper presents a study on the behavior of MC networks of digital phase-locked loops (DPLLs). Analytical results are derived showing that, even for static networks without delays, different synchronous states may exist for the network. An upper bound for the number of such states is also presented. Numerical simulations are used to show the following results: (i) the synchronization precision in MC DPLLs networks; (ii) the existence of synchronous states for the network does not guarantee its achievement and (iii) different synchronous states may be achieved for different initial conditions. These results are important in the neural computation context. as in this case, each synchronous state may be associated to a different analog memory information. (C) 2010 Elsevier B.V. All rights reserved.