937 resultados para multiple linear regression models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to carry a descriptive analysis in the monthly precipitation of rainfall stations from Rio de Janeiro State, Brazil, using data of position and dispersion and graphical analyses, and to verify the presence of seasonality and trend in these data, with a study about the application of models of time series. The descriptive statistics was to characterize the general behavior of the series in three stations selected which present consistent historical series. The methodology of analysis of variance in randomized blocks and the determination of models of multiple linear regression, considering years and months as predictors variables, disclosed the presence of seasonality, what allowed to infer on the occurrence of repetitive natural phenomena throughout the time and absence of trend in the data. It was applied the methodology of multiple linear regression to removal the seasonality of these time series. The original data had been deducted from the estimates made by the adjusted model and the analysis of variance in randomized blocks for the residues of regression was preceded again. With the results obtained it was possible to conclude that the monthly rainfall present seasonality and they don`t present trend, the analysis of multiple regression was efficient in the removal of the seasonality, and the rainfall can be studied by means of time series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term contractual decisions are the basis of an efficient risk management. However those types of decisions have to be supported with a robust price forecast methodology. This paper reports a different approach for long-term price forecast which tries to give answers to that need. Making use of regression models, the proposed methodology has as main objective to find the maximum and a minimum Market Clearing Price (MCP) for a specific programming period, and with a desired confidence level α. Due to the problem complexity, the meta-heuristic Particle Swarm Optimization (PSO) was used to find the best regression parameters and the results compared with the obtained by using a Genetic Algorithm (GA). To validate these models, results from realistic data are presented and discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective - To evaluate the effect of prepregnancy body mass index (BMI), energy and macronutrient intakes during pregnancy, and gestational weight gain (GWG) on the body composition of full-term appropriate-for-gestational age neonates. Study Design - This is a cross-sectional study of a systematically recruited convenience sample of mother-infant pairs. Food intake during pregnancy was assessed by food frequency questionnaire and its nutritional value by the Food Processor Plus (ESHA Research Inc, Salem, OR). Neonatal body composition was assessed both by anthropometry and air displacement plethysmography. Explanatory models for neonatal body composition were tested by multiple linear regression analysis. Results - A total of 100 mother-infant pairs were included. Prepregnancy overweight was positively associated with offspring weight, weight/length, BMI, and fat-free mass in the whole sample; in males, it was also positively associated with midarm circumference, ponderal index, and fat mass. Higher energy intake from carbohydrate was positively associated with midarm circumference and weight/length in the whole sample. Higher GWG was positively associated with weight, length, and midarm circumference in females. Conclusion - Positive adjusted associations were found between both prepregnancy BMI and energy intake from carbohydrate and offspring body size in the whole sample. Positive adjusted associations were also found between prepregnancy overweight and adiposity in males, and between GWG and body size in females.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado em Ciências Económicas e Empresariais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão de Empresas (MBA), 19 de Fevereiro de 2016, Universidade dos Açores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Container Loading Problem (CLP) literature has traditionally evaluated the dynamic stability of cargo by applying two metrics to box arrangements: the mean number of boxes supporting the items excluding those placed directly on the floor (M1) and the percentage of boxes with insufficient lateral support (M2). However, these metrics, that aim to be proxies for cargo stability during transportation, fail to translate real-world cargo conditions of dynamic stability. In this paper two new performance indicators are proposed to evaluate the dynamic stability of cargo arrangements: the number of fallen boxes (NFB) and the number of boxes within the Damage Boundary Curve fragility test (NB_DBC). Using 1500 solutions for well-known problem instances found in the literature, these new performance indicators are evaluated using a physics simulation tool (StableCargo), replacing the real-world transportation by a truck with a simulation of the dynamic behaviour of container loading arrangements. Two new dynamic stability metrics that can be integrated within any container loading algorithm are also proposed. The metrics are analytical models of the proposed stability performance indicators, computed by multiple linear regression. Pearson’s r correlation coefficient was used as an evaluation parameter for the performance of the models. The extensive computational results show that the proposed metrics are better proxies for dynamic stability in the CLP than the previous widely used metrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente dissertação tem como objetivo analisar se existe relação entre a manipulação de resultados e a qualidade da auditoria, baseado no estudo do comportamento de determinados “accruals” nas empresas portuguesas não cotadas. Nos diversos estudos existentes sobre o tema “Relação da Qualidade da Auditoria e Manipulação de Resultados”, surgem abordados muitos aspetos, nomeadamente no que respeita às motivações, às formas de manipulação e métodos de deteção que se verifica no campo da auditoria e, este trabalho, pretende abordar se o processo da auditoria é, ou não, eficaz na deteção destas práticas efetuadas pelos gestores, pois isso influencia a confiança naqueles que utilizam a informação financeira. Desta forma, o trabalho pretende basear-se nestas abordagens e complementar visões e conclusões. Neste âmbito, surgem perspetivas e informações que alertam para comportamentos de risco, assim como a sua origem, ou seja, as motivações que provocam esta prática, tanto por parte dos gestores como dos administradores. É nesta perspetiva que este trabalho se enquadra, numa sociedade contemporânea que continuadamente dá exemplos reais e concretos destas práticas. Um ponto é comum, que é o facto de a manipulação dos resultados surgir principalmente pelo motivo dos interesses e motivações por parte dos gestores em conseguirem benefícios. Na tese são abordados os incentivos que levam à manipulação no contexto português, que parecem estar relacionados com o contexto económico e fiscal, onde é desenvolvida a atividade dos agentes económicos. Outra abordagem importante no trabalho é a referência às principais metodologias de detenção da manipulação de resultados, nomeadamente os modelos baseados nos accruals e na distribuição de resultados. O modelo empírico deste estudo consiste numa regressão linear múltipla, com o objetivo de explicar a relação, entre a variável accruals discricionários e as variáveis Big4, a dimensão da empresa, o endividamento, o volume de negócios e a rendibilidade. Para complementar este estudo a análise empírica incidiu sobre 4723 empresas portuguesas não cotadas, a amostra usada foi baseada na base de dados SABI, para um período de análise entre 2011 a 2013. Os resultados encontrados sugerem que existe relação entre a qualidade da auditoria e a manipulação dos resultados concluindo que as empresas auditadas pelas Big4 apresentam accruals discricionários inferiores às restantes empresas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2015