980 resultados para multilevel statistical modeling
Resumo:
The purpose of the present article is to take stock of a recent exchange in Organizational Research Methods between critics (Rönkkö & Evermann, 2013) and proponents (Henseler et al., 2014) of partial least squares path modeling (PLS-PM). The two target articles were centered around six principal issues, namely whether PLS-PM: (1) can be truly characterized as a technique for structural equation modeling (SEM); (2) is able to correct for measurement error; (3) can be used to validate measurement models; (4) accommodates small sample sizes; (5) is able to provide null hypothesis tests for path coefficients; and (6) can be employed in an exploratory, model-building fashion. We summarize and elaborate further on the key arguments underlying the exchange, drawing from the broader methodological and statistical literature in order to offer additional thoughts concerning the utility of PLS-PM and ways in which the technique might be improved. We conclude with recommendations as to whether and how PLS-PM serves as a viable contender to SEM approaches for estimating and evaluating theoretical models.
Resumo:
OBJECTIVE: Hierarchical modeling has been proposed as a solution to the multiple exposure problem. We estimate associations between metabolic syndrome and different components of antiretroviral therapy using both conventional and hierarchical models. STUDY DESIGN AND SETTING: We use discrete time survival analysis to estimate the association between metabolic syndrome and cumulative exposure to 16 antiretrovirals from four drug classes. We fit a hierarchical model where the drug class provides a prior model of the association between metabolic syndrome and exposure to each antiretroviral. RESULTS: One thousand two hundred and eighteen patients were followed for a median of 27 months, with 242 cases of metabolic syndrome (20%) at a rate of 7.5 cases per 100 patient years. Metabolic syndrome was more likely to develop in patients exposed to stavudine, but was less likely to develop in those exposed to atazanavir. The estimate for exposure to atazanavir increased from hazard ratio of 0.06 per 6 months' use in the conventional model to 0.37 in the hierarchical model (or from 0.57 to 0.81 when using spline-based covariate adjustment). CONCLUSION: These results are consistent with trials that show the disadvantage of stavudine and advantage of atazanavir relative to other drugs in their respective classes. The hierarchical model gave more plausible results than the equivalent conventional model.
Resumo:
A human in vivo toxicokinetic model was built to allow a better understanding of the toxicokinetics of folpet fungicide and its key ring biomarkers of exposure: phthalimide (PI), phthalamic acid (PAA) and phthalic acid (PA). Both PI and the sum of ring metabolites, expressed as PA equivalents (PAeq), may be used as biomarkers of exposure. The conceptual representation of the model was based on the analysis of the time course of these biomarkers in volunteers orally and dermally exposed to folpet. In the model, compartments were also used to represent the body burden of folpet and experimentally relevant PI, PAA and PA ring metabolites in blood and in key tissues as well as in excreta, hence urinary and feces. The time evolution of these biomarkers in each compartment of the model was then mathematically described by a system of coupled differential equations. The mathematical parameters of the model were then determined from best fits to the time courses of PI and PAeq in blood and urine of five volunteers administered orally 1 mg kg(-1) and dermally 10 mg kg(-1) of folpet. In the case of oral administration, the mean elimination half-life of PI from blood (through feces, urine or metabolism) was found to be 39.9 h as compared with 28.0 h for PAeq. In the case of a dermal application, mean elimination half-life of PI and PAeq was estimated to be 34.3 and 29.3 h, respectively. The average final fractions of administered dose recovered in urine as PI over the 0-96 h period were 0.030 and 0.002%, for oral and dermal exposure, respectively. Corresponding values for PAeq were 24.5 and 1.83%, respectively. Finally, the average clearance rate of PI from blood calculated from the oral and dermal data was 0.09 ± 0.03 and 0.13 ± 0.05 ml h(-1) while the volume of distribution was 4.30 ± 1.12 and 6.05 ± 2.22 l, respectively. It was not possible to obtain the corresponding values from PAeq data owing to the lack of blood time course data.
Resumo:
Kuvien laatu on tutkituimpia ja käytetyimpiä aiheita. Tässä työssä tarkastellaan värin laatu ja spektrikuvia. Työssä annetaan yleiskuva olemassa olevista pakattujen ja erillisten kuvien laadunarviointimenetelmistä painottaen näiden menetelmien soveltaminen spektrikuviin. Tässä työssä esitellään spektriväriulkomuotomalli värikuvien laadunarvioinnille. Malli sovelletaan spektrikuvista jäljennettyihin värikuviin. Malli pohjautuu sekä tilastolliseen spektrikuvamalliin, joka muodostaa yhteyden spektrikuvien ja valokuvien parametrien välille, että kuvan yleiseen ulkomuotoon. Värikuvien tilastollisten spektriparametrien ja fyysisten parametrien välinen yhteys on varmennettu tietokone-pohjaisella kuvamallinnuksella. Mallin ominaisuuksien pohjalta on kehitetty koekäyttöön tarkoitettu menetelmä värikuvien laadunarvioinnille. On kehitetty asiantuntija-pohjainen kyselymenetelmä ja sumea päättelyjärjestelmä värikuvien laadunarvioinnille. Tutkimus osoittaa, että spektri-väri –yhteys ja sumea päättelyjärjestelmä soveltuvat tehokkaasti värikuvien laadunarviointiin.
Resumo:
PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.
Resumo:
In a very volatile industry of high technology it is of utmost importance to accurately forecast customers’ demand. However, statistical forecasting of sales, especially in heavily competitive electronics product business, has always been a challenging task due to very high variation in demand and very short product life cycles of products. The purpose of this thesis is to validate if statistical methods can be applied to forecasting sales of short life cycle electronics products and provide a feasible framework for implementing statistical forecasting in the environment of the case company. Two different approaches have been developed for forecasting on short and medium term and long term horizons. Both models are based on decomposition models, but differ in interpretation of the model residuals. For long term horizons residuals are assumed to represent white noise, whereas for short and medium term forecasting horizon residuals are modeled using statistical forecasting methods. Implementation of both approaches is performed in Matlab. Modeling results have shown that different markets exhibit different demand patterns and therefore different analytical approaches are appropriate for modeling demand in these markets. Moreover, the outcomes of modeling imply that statistical forecasting can not be handled separately from judgmental forecasting, but should be perceived only as a basis for judgmental forecasting activities. Based on modeling results recommendations for further deployment of statistical methods in sales forecasting of the case company are developed.
Resumo:
Many European states apply score systems to evaluate the disability severity of non-fatal motor victims under the law of third-party liability. The score is a non-negative integer with an upper bound at 100 that increases with severity. It may be automatically converted into financial terms and thus also reflects the compensation cost for disability. In this paper, discrete regression models are applied to analyze the factors that influence the disability severity score of victims. Standard and zero-altered regression models are compared from two perspectives: an interpretation of the data generating process and the level of statistical fit. The results have implications for traffic safety policy decisions aimed at reducing accident severity. An application using data from Spain is provided.
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal
Resumo:
This work describes techniques for modeling, optimizing and simulating calibration processes of robots using off-line programming. The identification of geometric parameters of the nominal kinematic model is optimized using techniques of numerical optimization of the mathematical model. The simulation of the actual robot and the measurement system is achieved by introducing random errors representing their physical behavior and its statistical repeatability. An evaluation of the corrected nominal kinematic model brings about a clear perception of the influence of distinct variables involved in the process for a suitable planning, and indicates a considerable accuracy improvement when the optimized model is compared to the non-optimized one.
Resumo:
We study the problem of measuring the uncertainty of CGE (or RBC)-type model simulations associated with parameter uncertainty. We describe two approaches for building confidence sets on model endogenous variables. The first one uses a standard Wald-type statistic. The second approach assumes that a confidence set (sampling or Bayesian) is available for the free parameters, from which confidence sets are derived by a projection technique. The latter has two advantages: first, confidence set validity is not affected by model nonlinearities; second, we can easily build simultaneous confidence intervals for an unlimited number of variables. We study conditions under which these confidence sets take the form of intervals and show they can be implemented using standard methods for solving CGE models. We present an application to a CGE model of the Moroccan economy to study the effects of policy-induced increases of transfers from Moroccan expatriates.
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.
Resumo:
Les séquences protéiques naturelles sont le résultat net de l’interaction entre les mécanismes de mutation, de sélection naturelle et de dérive stochastique au cours des temps évolutifs. Les modèles probabilistes d’évolution moléculaire qui tiennent compte de ces différents facteurs ont été substantiellement améliorés au cours des dernières années. En particulier, ont été proposés des modèles incorporant explicitement la structure des protéines et les interdépendances entre sites, ainsi que les outils statistiques pour évaluer la performance de ces modèles. Toutefois, en dépit des avancées significatives dans cette direction, seules des représentations très simplifiées de la structure protéique ont été utilisées jusqu’à présent. Dans ce contexte, le sujet général de cette thèse est la modélisation de la structure tridimensionnelle des protéines, en tenant compte des limitations pratiques imposées par l’utilisation de méthodes phylogénétiques très gourmandes en temps de calcul. Dans un premier temps, une méthode statistique générale est présentée, visant à optimiser les paramètres d’un potentiel statistique (qui est une pseudo-énergie mesurant la compatibilité séquence-structure). La forme fonctionnelle du potentiel est par la suite raffinée, en augmentant le niveau de détails dans la description structurale sans alourdir les coûts computationnels. Plusieurs éléments structuraux sont explorés : interactions entre pairs de résidus, accessibilité au solvant, conformation de la chaîne principale et flexibilité. Les potentiels sont ensuite inclus dans un modèle d’évolution et leur performance est évaluée en termes d’ajustement statistique à des données réelles, et contrastée avec des modèles d’évolution standards. Finalement, le nouveau modèle structurellement contraint ainsi obtenu est utilisé pour mieux comprendre les relations entre niveau d’expression des gènes et sélection et conservation de leur séquence protéique.
Resumo:
La vie des femmes du continent africain et de leurs enfants continue d’être mise en danger lors de chaque accouchement car les risques de décès maternels et infantiles sont encore très élevés. Il est estimé chaque année à environ le quart du million le nombre de décès maternel et de près de quatre millions celui des enfants de moins de cinq ans. La comparaison de la situation sanitaire avec d’autres contextes permet de mieux cerner l’ampleur du problème : en Afrique sub-Saharienne, le risque de décès lié à la grossesse est de l’ordre de 1 pour 31, alors qu’il n’est que de 1 pour 4300 dans les pays industrialisés. Cette situation est évitable et, le plus souvent, résulte de la sous ou non-utilisation des services de santé maternelle, du manque de structures adéquates de soins ou de personnel de santé qualifié. Notre thèse cherche à comprendre la manière dont les inégalités de genre au sein du ménage et dans la communauté renforcent les inégalités quant à l’utilisation des services de santé maternelle, ainsi qu’aux relations empiriques qui lient les différents recours aux soins. Concrètement, elle vise à 1) proposer une mesure des normes de genre favorables à la violence contre les femmes et à analyser son influence sur leur prise de décision au sein du ménage, 2) analyser simultanément l’influence de ces normes et de l’autonomie des femmes sur le recours aux soins prénatals et à l’accouchement assisté et finalement, 3) cerner l’influence des soins prénatals sur le recours à l’accouchement assisté. Chacun de ces objectifs se heurte à un problème méthodologique substantiel, soit de mesure ou de biais de sélection, auxquels l’approche par modèles d’équations structurelles que nous avons adoptée permet de remédier. Les résultats de nos analyses, présentés sous forme d’articles scientifiques, s’appuient sur les données issues des Enquêtes Démographiques et de Santé (EDS) du Ghana, du Kenya, de l’Ouganda et de la Tanzanie et concernent les femmes vivant en milieu rural. Notre premier article propose une mesure des normes de genre et, plus exactement, celles liées à la violence contre les femmes en recourant à l’approche des variables latentes. Les cinq questions des EDS relatives à l’attitude des femmes sur la légitimation de la violence ont permis de saisir cette mesure au niveau contextuel. Les résultats suggèrent d’une part que cette mesure a de bons critères de validité puisque l’Alpha de Cronbach varie de 0.85 pour le Kenya à 0.94 pour le Ghana; les chi-deux sont non significatifs partout; le RMSEA est en dessous de 0.05; le CFI supérieur à 0.96 et les saturations sont pour la plupart supérieures à 0.7 dans tous les pays. D’autre part, à l’aide du modèle d’équations structurelles multiniveaux, nous avons trouvé qu’au-delà de leur propre attitude envers la violence contre les femmes, celles qui vivent dans un milieu où les normes de genres sont plus favorables à la violence ont plus de chances d’être de faible autonomie ou sans autonomie (comparativement à forte autonomie) dans l’ensemble des pays étudiés. Le second article documente l’influence des inégalités de genre, cernées au niveau contextuel par les normes favorables à la violence contre les femmes et au niveau individuel par l’autonomie de prise de décision au sein du ménage, sur la survenue des soins prénatals au cours du premier trimestre et sur les recours à au moins 4 consultations prénatales et à l’accouchement assisté. En utilisant également les modèles d’équations structurelles multiniveaux sur les mêmes données du premier article, nous constatons que chacune de ces variables dépendantes est fortement influencée par la grappe dans laquelle la femme vit. En d’autres mots, son lieu de résidence détermine le comportement de santé maternelle que l’on adopte. De même, en contrôlant pour les autres variables explicatives, nos résultats montrent que les femmes qui vivent dans un milieu où les normes de genre liées à la violence contre les femmes sont élevées ont, en moyenne, une plus grande chance de ne pas accoucher auprès d’un personnel qualifié au Ghana et en Ouganda, de ne pas débuter leurs soins prénatals dans le premier trimestre dans les mêmes pays, et de ne pas recourir à au moins quatre consultations prénatales en Tanzanie. Par contre, cette variable contextuelle n’influence pas significativement le recours aux soins de santé maternelle au Kenya. Enfin, les résultats montrent que les normes de genre favorables à la violence contre les femmes sont plus déterminantes pour comprendre le recours aux soins de santé maternelle dans les pays étudiés que l’autonomie de prise de décision de la femme. Dans le cadre du troisième et dernier article empirique de la thèse, nous nous sommes intéressés à l’importance des soins prénatals dans le processus de recours à l’accouchement assisté et à la place du contenu des soins reçus avant l’accouchement dans cette relation. Cet article met en exergue l’existence de biais d’endogénéité au Kenya et en Tanzanie, où sans sa prise en compte, l’effet des soins prénatals sur le recours à l’accouchement auprès d’un personnel qualifié serait fortement biaisé. De plus, il ressort qu’à l’exception du Ghana et dans une moindre mesure de la Tanzanie, cet effet est totalement médiatisé par le contenu des soins prénatals que les femmes reçoivent. L’article met ainsi en relief le rôle des prestataires de soins qui pour atteindre plus efficacement les populations doivent agir en tant que leaders au sein de leur communauté.
Resumo:
Contexte: L'obésité chez les jeunes représente aujourd’hui un problème de santé publique à l’échelle mondiale. Afin d’identifier des cibles potentielles pour des stratégies populationnelles de prévention, les liens entre les caractéristiques du voisinage, l’obésité chez les jeunes et les habitudes de vie font de plus en plus l’objet d’études. Cependant, la recherche à ce jour comporte plusieurs incohérences. But: L’objectif général de cette thèse est d’étudier la contribution de différentes caractéristiques du voisinage relativement à l’obésité chez les jeunes et les habitudes de vie qui y sont associées. Les objectifs spécifiques consistent à: 1) Examiner les associations entre la présence de différents commerces d’alimentation dans les voisinages résidentiels et scolaires des enfants et leurs habitudes alimentaires; 2) Examiner comment l’exposition à certaines caractéristiques du voisinage résidentiel détermine l’obésité au niveau familial (chez le jeune, la mère et le père), ainsi que l’obésité individuelle pour chaque membre de la famille; 3) Identifier des combinaisons de facteurs de risque individuels, familiaux et du voisinage résidentiel qui prédisent le mieux l’obésité chez les jeunes, et déterminer si ces profils de facteurs de risque prédisent aussi un changement dans l’obésité après un suivi de deux ans. Méthodes: Les données proviennent de l’étude QUALITY, une cohorte québécoise de 630 jeunes, âgés de 8-10 ans au temps 1, avec une histoire d’obésité parentale. Les voisinages de 512 participants habitant la Région métropolitaine de Montréal ont été caractérisés à l’aide de : 1) données spatiales provenant du recensement et de bases de données administratives, calculées pour des zones tampons à partir du réseau routier et centrées sur le lieu de la résidence et de l’école; et 2) des observations menées par des évaluateurs dans le voisinage résidentiel. Les mesures du voisinage étudiées se rapportent aux caractéristiques de l’environnement bâti, social et alimentaire. L’obésité a été estimée aux temps 1 et 2 à l’aide de l’indice de masse corporelle (IMC) calculé à partir du poids et de la taille mesurés. Les habitudes alimentaires ont été mesurées au temps 1 à l'aide de trois rappels alimentaires. Les analyses effectuées comprennent, entres autres, des équations d'estimation généralisées, des régressions multiniveaux et des analyses prédictives basées sur des arbres de décision. Résultats: Les résultats démontrent la présence d’associations avec l’obésité chez les jeunes et les habitudes alimentaires pour certaines caractéristiques du voisinage. En particulier, la présence de dépanneurs et de restaurants-minutes dans le voisinage résidentiel et scolaire est associée avec de moins bonnes habitudes alimentaires. La présence accrue de trafic routier, ainsi qu’un faible niveau de prestige et d’urbanisation dans le voisinage résidentiel sont associés à l’obésité familiale. Enfin, les résultats montrent qu’habiter un voisinage obésogène, caractérisé par une défavorisation socioéconomique, la présence de moins de parcs et de plus de dépanneurs, prédit l'obésité chez les jeunes lorsque combiné à la présence de facteurs de risque individuels et familiaux. Conclusion: Cette thèse contribue aux écrits sur les voisinages et l’obésité chez les jeunes en considérant à la fois l'influence potentielle du voisinage résidentiel et scolaire ainsi que l’influence de l’environnement familial, en utilisant des méthodes objectives pour caractériser le voisinage et en utilisant des méthodes statistiques novatrices. Les résultats appuient en outre la notion que les efforts de prévention de l'obésité doivent cibler les multiples facteurs de risque de l'obésité chez les jeunes dans les environnements bâtis, sociaux et familiaux de ces jeunes.
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.