999 resultados para molecular hybridization
Resumo:
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.
Resumo:
Human rhinoviruses (HRV), and to a lesser extent human enteroviruses (HEV), are important respiratory pathogens. Like other RNA viruses, these picornaviruses have an intrinsic propensity to variability. This results in a large number of different serotypes as well as the incessant discovery of new genotypes. This large and growing diversity not only complicates the design of real-time PCR assays but also renders immunofluorescence unfeasible for broad HRV and HEV detection or quantification in cells. In this study, we used the 5' untranslated region, the most conserved part of the genome, as a target for the development of both a real-time PCR assay (Panenterhino/Ge/08) and a peptide nucleic acid-based hybridization oligoprobe (Panenterhino/Ge/08 PNA probe) designed to detect all HRV and HEV species members according to publicly available sequences. The reverse transcription-PCR assay has been validated, using not only plasmid and viral stocks but also quantified RNA transcripts and around 1,000 clinical specimens. These new generic detection PCR assays overcame the variability of circulating strains and lowered the risk of missing emerging and divergent HRV and HEV. An additional real-time PCR assay (Entero/Ge/08) was also designed specifically to provide sensitive and targeted detection of HEV in cerebrospinal fluid. In addition to the generic probe, we developed specific probes for the detection of HRV-A and HRV-B in cells. This investigation provides a comprehensive toolbox for accurate molecular identification of the different HEV and HRV circulating in humans.
Resumo:
Molecular markers reliably predicting failure or success of Bacillus Calmette-Guérin (BCG) in the treatment of nonmuscle-invasive urothelial bladder cancer (NMIBC) are lacking. The aim of our study was to evaluate the value of cytology and chromosomal aberrations detected by fluorescence in situ hybridization (FISH) in predicting failure to BCG therapy. Sixty-eight patients with NMIBC were prospectively recruited. Bladder washings collected before and after BCG instillation were analyzed by conventional cytology and by multitarget FISH assay (UroVysion, Abbott/Vysis, Des Plaines, IL) for aberrations of chromosomes 3, 7, 17 and 9p21. Persistent and recurrent bladder cancers were defined as positive events during follow-up. Twenty-six of 68 (38%) NMIBC failed to BCG. Both positive post-BCG cytology and positive post-BCG FISH were significantly associated with failure of BCG (hazard ratio (HR)= 5.1 and HR= 5.6, respectively; p < 0.001 each) when compared to those with negative results. In the subgroup of nondefinitive cytology (all except those with unequivocally positive cytology), FISH was superior to cytology as a marker of relapse (HR= 6.2 and 1.4, respectively). Cytology and FISH in post-BCG bladder washings are highly interrelated and a positive result predicts failure to BCG therapy in patients with NMIBC equally well. FISH is most useful in the diagnostically less certain cytology categories but does not provide additional information in clearly malignant cytology.
Resumo:
Aggregation-induced emission (AIE) was studied by hybridization of dialkynyl-tetraphenylethylene (DATPE) modified DNA strands. Molecular aggregation and fluorescence of DATPEs are controlled by duplex formation.
Resumo:
Using variothermal polymer micro-injection molding, disposable arrays of eight polymer micro-cantilevers each 500 μm long, 100 μm wide and 25 μm thick were fabricated. The present study took advantage of an easy flow grade polypropylene. After gold coating for optical read-out and asymmetrical sensitization, the arrays were introduced into the Cantisens(®) Research system to perform mechanical and functional testing. We demonstrate that polypropylene cantilevers can be used as biosensors for medical purposes in the same manner as the established silicon ones to detect single-stranded DNA sequences and metal ions in real-time. A differential signal of 7 nm was detected for the hybridization of 1 μM complementary DNA sequences. For 100 nM copper ions the differential signal was found to be (36 ± 5) nm. Nano-mechanical sensing of medically relevant, nanometer-size species is essential for fast and efficient diagnosis.
Resumo:
Whether interspecific hybridization is important as a mechanism that generates biological diversity is a matter of controversy. Whereas some authors focus on the potential of hybridization as a source of genetic variation, functional novelty and new species, others argue against any important role, because reduced fitness would typically render hybrids an evolutionary dead end. By drawing on recent developments in the genetics and ecology of hybridization and on principles of ecological speciation theory, I develop a concept that reconciles these views and adds a new twist to this debate. Because hybridization is common when populations invade new environments and potentially elevates rates of response to selection, it predisposes colonizing populations to rapid adaptive diversification under disruptive or divergent selection. I discuss predictions and suggest tests of this hybrid swarm theory of adaptive radiation and review published molecular phylogenies of adaptive radiations in light of the theory. Some of the confusion about the role of hybridization in evolutionary diversification stems from the contradiction between a perceived necessity for cessation of gene flow to enable adaptive population differentiation on the one hand [1], and the potential of hybridization for generating adaptive variation, functional novelty and new species 2, 3 and 4 on the other. Much progress in the genetics 5, 6, 7, 8 and 9 and ecology of hybridization 9, 10 and 11, and in our understanding of the role of ecology in speciation (see Glossary) 12, 13 and 14 make a re-evaluation timely. Whereas botanists traditionally stressed the diversity-generating potential of hybridization 2, 3 and 14, zoologists traditionally saw it as a process that limits diversification [1] and refer to it mainly in the contexts of hybrid zones (Box 1) and reinforcement of reproductive isolation [15]. Judging by the wide distribution of allopolyploidy among plants, many plant species might be of direct hybrid origin or descended from a hybrid species in the recent past [16]. The ability to reproduce asexually might explain why allopolyploid hybrid species are more common in plants than in animals. Allopolyploidy arises when meiotic mismatch of parental chromosomes or karyotypes causes hybrid sterility. Mitotic error, duplicating the karyotype, can restore an asexually maintained hybrid line to fertility. Although bisexual allopolyploid hybrid species are not uncommon in fish [17] and frogs [18], the difficulty with which allopolyploid animals reproduce, typically requiring gynogenesis[19], makes establishment and survival of allopolyploid animal species difficult.
Resumo:
D1S1, an anonymous human DNA clone originally called (lamda)Ch4-H3 or (lamda)H3, was the first single copy mapped to a human chromosome (1p36) by in situ hybridization. The chromosomal assignment has been confirmed in other laboratories by repeating the in situ hybridization but not by another method. In the present study, hybridization to a panel of hamster-human somatic cell hybrids revealed copies of D1S1 on both chromosomes 1 and 3. Subcloning D1S1 showed that the D1S1 clone itself is from chromosome 3, and the sequence detected by in situ hybridization is at least two copies of part of the chromosome 3 copy. This finding demonstrates the importance of verifying gene mapping with two methods and questions the accuracy of in situ hybridization mapping.^ Non-human mammals have only one copy of D1S1, and the non-human primate D1S1 map closely resembles the human chromosome 3 copy. Thus, the human chromosome 1 copies appear to be part of a very recent duplication that occurred after the divergence between humans and the other great apes.^ A moderately informative HindIII D1S1 RFLP was mapped to chromosome 3. This marker and 12 protein markers were applied to a linkage study of autosomal dominant retinitis pigmentosa (ADRP). None of the markers proved linkage, but adding the three families examined to previously published data raises the ADRP:Rh lod score to 1.92 at (THETA) = 0.30. ^
Resumo:
The loci of the porcine tumour necrosis factor genes, alpha (TNFA) and beta (TNFB), have been chromosomally assigned by radioactive in situ hybridization. The genomic probes for TNFA and TNFB yielded signals above 7p11-q11, a region that has been shown earlier to carry the porcine major histocompatibility locus (SLA). These mapping data along with preliminary molecular studies suggest a genomic organization of the SLA that is similar to that of human and murine major histocompatibility complexes.
Resumo:
The mammalian glycinamide ribonucleotide formyltransferase (GART) genes encode a trifunctional polypeptide involved in the de novo purine biosynthesis. We isolated a bacterial artificial chromosome (BAC) clone containing the bovine GART gene and determined the complete DNA sequence of the BAC clone. Cloning and characterization of the bovine GART gene revealed that the bovine gene consists of 23 exons spanning approximately 27 kb. RT-PCR amplification of bovine GART in different organs showed the expression of two GART transcripts in cattle similar to human and mouse. The GART transcripts encode two proteins of 1010 and 433 amino acids, respectively. Eleven single nucleotide polymorphisms (SNPs) were detected in a mutation scan of 24 unrelated animals of three different cattle breeds, including one SNP that affects the amino acid sequence of GART. The chromosomal localization of the gene was determined by fluorescence in situ hybridization. Comparative genome analysis between cattle, human and mouse indicates that the chromosomal location of the bovine GART gene is in agreement with a previously published mapping report.
Resumo:
The purpose of the work performed in this dissertation was to examine some of the possible regulatory mechanisms involved in the initiation of muscular atrophy during periods of decreased muscle utilization resulting from hindlimb immobilization in the rat. A 37% decrease in the rate of total muscle protein synthesis which has been observed to occur in the first 6 h of immobilization contributes significantly to the observed loss of protein during immobilization.^ The rates of cytochrome c and actin synthesis were determined in adult rat red vastus lateralis and gastrocnemius muscles, respectively, by the constant infusion and incorporation of ('3)H-tyrosine into protein. The fractional synthesis rates of both actin and cytochrome c were significantly decreased (P < 0.05) in the 6th h of hindlimb immobilization.^ RHA was extracted from adult rat gastrocnemius muscle by modification of the phenol: chloroform: SDS extraction procedures commonly used for preparation of RNA for hybridization analysis from other mammalian tissues. RNA content of rat gastrocnemius muscle, as determined by this method of extraction and its subsequent quantification by UV absorbance and orcinol assay, was significantly greater than the RNA content previously determined for adult rat gastrocnemius by other commonly employed methods.^ RNA extracted by this method from gastrocnemius muscles of control and 6h immobilized rats was subjected to "dot blot" hybridization to ('32)P-labelled probe from plasmid p749, containing a cDNA sequence complementary to (alpha)-actin mRNA and from rat skeletal muscle. (alpha)-Actin specific mRNA content as estimated by this procedure is not significantly decreased in rat gastrocnemius following 6h or hindlimb immobilization. However, (alpha)-actin specific mRNA content is significantly decreased (P < 0.05) in adult rat gastrocnemius (alpha)-actin specific mRNA is not decreased in adult rat gastrocnemius muscle following 6h of immobilization, a time when actin synthesis is significantly decreased, it is concluded that a change in (alpha)-actin specific mRNA content is not the initiating event responsible for the early decrease in actin synthesis observed in the 6th h of immobilization. ^
Resumo:
La presente tesis doctoral se centra en el estudio de la respuesta molecular de las coníferas mediterráneas al estrés hídrico. Para ello se ha escogido como especie modelo Pinus pinaster Ait., la conífera más abundante en España, y que habita un amplio rango de situaciones ecológicas, especialmente en lo relativo a la disponibilidad de agua. En primer lugar, se ha aplicado un estrés hídrico controlado en cultivo hidropónico y se ha generando una genoteca sustractiva con objeto de identificar los genes inducidos por el estrés, analizando su expresión en raíces, tallos y acículas. A continuación, se ha analizado, la expresión de los genes anteriormente obtenidos así como de otros seleccionados de las bases de datos disponibles, durante una sequía prolongada en tierra, similar a las que las plantas deben afrontar en la naturaleza. Se ha utilizado en este caso, además de P. pinaster, P. pinea, otra conífera mediterránea adaptada a las sequías recurrentes. Este trabajo ha permitido identificar genes candidato expresionales, presumiblemente comunes en la respuesta molecular de las coníferas al déficit hídrico. Se han detectado diferencias notables en la expresión de determinados genes, que podrían ser los responsables de las diferencias exhibidas por ambas especies en el comportamiento frente a la sequía. Entre los genes identificados como inducidos por el estrés hídrico se encuentran varios miembros de la familia de las deshidrinas. Trabajos previos han utilizado deshidrinas como genes candidato; no obstante, la falta de especificidad de ciertos fragmentos y marcadores utilizados, debido a la complejidad estructural de esta familia, resta fiabilidad a algunos de los resultados publicados. Por este motivo, se ha estudiado en detalle esta familia en P. pinaster, se han identificado y caracterizado 8 miembros y se ha analizado su patrón de expresión frente a sequía. Este estudio ha permitido describir por primera vez unos segmentos conservados en la secuencia de aminoácidos de las deshidrinas de pináceas, cuya presencia y número de repeticiones parece estar relacionado con su especificidad. Por último, se han escogido tres genes implicados en distintas fases de la respuesta al estrés hídrico para su análisis exhaustivo: una deshidrina, una nodulina y un factor de transcripción tipo AP2. Se ha caracterizado su estructura exón/intrón y secuenciado su región promotora. Además, se han obtenido líneas transformadas que sobreexpresan estos genes tanto de forma heteróloga, en la especie modelo Arabidopsis thaliana, como en el propio P. pinaster. Este material facilitará la realización de futuros estudios sobre la función y el mecanismo de actuación de estos genes en la respuesta al estrés hídrico. ABSTRACT This thesis focuses in the study of the molecular response to water stress in Mediterranean conifers. For this purpose, P. pinaster was selected as model species. It’s the most abundant conifer in Spain, living in a wide range of ecological conditions, especially regarding water availability. First, we have applied a controlled polyethylene glycol-induced water stress in hydroponic culture and obtained a suppression subtractive hybridization (SSH) library, with the aim of identifying genes induced by water stress, analysing their expression in roots, stems and needles. We have then analysed the expression patterns of the identified genes, together with other genes selected from public databases. This study was conducted throughout a prolonged drought stress in soil, similar to the ones plants have to face in nature. In this case not only P. pinaster was analysed but also P. pinea, another Mediterranean conifer well adapted to recurrent droughts. This work has enabled us to identify of reliable candidate genes, presumably shared with other conifers in the response to water stress. We observed remarkable differences in the expression of some genes, which could be involved in the differential behaviour that these species show in the water stress response. Within the genes induced by water stress, several members of the dehydrin gene family were identified. Due to the structural complexity of the family, certain ambiguities and inconsistencies have been detected in previous works that have used dehydrins as candidate genes. For this reason, we have analysed thoroughly this gene family in P. pinaster, and have identified and characterized eight different members, whose expression patterns during drought have also been assessed. This study has allowed us to identify for the first time novel conserved segments in the amino acids sequences of Pinaceae. The presence and number of repetitions of these segments could be associated with the functional specificity of these proteins. Finally, three genes involved in different steps of the water stress response were selected for an exhaustive analysis: a dehydrin, a nodulin and an AP2 transcription factor. For all of them, the exon/intron structure was established and their promoter region was sequenced. Also, transformed lines were obtained both in Arabidopsis thaliana and in P. pinaster for the constitutive overexpression of these genes. This material will facilitate the development of further studies to investigate the function of these genes during the water stress response
Resumo:
Cancer is a progressive multigenic disorder characterized by defined changes in the transformed phenotype that culminates in metastatic disease. Determining the molecular basis of progression should lead to new opportunities for improved diagnostic and therapeutic modalities. Through the use of subtraction hybridization, a gene associated with transformation progression in virus- and oncogene-transformed rat embryo cells, progression elevated gene-3 (PEG-3), has been cloned. PEG-3 shares significant nucleotide and amino acid sequence homology with the hamster growth arrest and DNA damage-inducible gene gadd34 and a homologous murine gene, MyD116, that is induced during induction of terminal differentiation by interleukin-6 in murine myeloid leukemia cells. PEG-3 expression is elevated in rodent cells displaying a progressed-transformed phenotype and in rodent cells transformed by various oncogenes, including Ha-ras, v-src, mutant type 5 adenovirus (Ad5), and human papilloma virus type 18. The PEG-3 gene is transcriptionally activated in rodent cells, as is gadd34 and MyD116, after treatment with DNA damaging agents, including methyl methanesulfonate and γ-irradiation. In contrast, only PEG-3 is transcriptionally active in rodent cells displaying a progressed phenotype. Although transfection of PEG-3 into normal and Ad5-transformed cells only marginally suppresses colony formation, stable overexpression of PEG-3 in Ad5-transformed rat embryo cells elicits the progression phenotype. These results indicate that PEG-3 is a new member of the gadd and MyD gene family with similar yet distinct properties and this gene may directly contribute to the transformation progression phenotype. Moreover, these studies support the hypothesis that constitutive expression of a DNA damage response may mediate cancer progression.
Resumo:
A set of oat–maize chromosome addition lines with individual maize (Zea mays L.) chromosomes present in plants with a complete oat (Avena sativa L.) chromosome complement provides a unique opportunity to analyze the organization of centromeric regions of each maize chromosome. A DNA sequence, MCS1a, described previously as a maize centromere-associated sequence, was used as a probe to isolate cosmid clones from a genomic library made of DNA purified from a maize chromosome 9 addition line. Analysis of six cosmid clones containing centromeric DNA segments revealed a complex organization. The MCS1a sequence was found to comprise a portion of the long terminal repeats of a retrotransposon-like repeated element, termed CentA. Two of the six cosmid clones contained regions composed of a newly identified family of tandem repeats, termed CentC. Copies of CentA and tandem arrays of CentC are interspersed with other repetitive elements, including the previously identified maize retroelements Huck and Prem2. Fluorescence in situ hybridization revealed that CentC and CentA elements are limited to the centromeric region of each maize chromosome. The retroelements Huck and Prem2 are dispersed along all maize chromosomes, although Huck elements are present in an increased concentration around centromeric regions. Significant variation in the size of the blocks of CentC and in the copy number of CentA elements, as well as restriction fragment length variations were detected within the centromeric region of each maize chromosome studied. The different proportions and arrangements of these elements and likely others provide each centromeric region with a unique overall structure.
Resumo:
Accumulation of red phlobaphene pigments in sorghum grain pericarp is under the control of the Y gene. A mutable allele of Y, designated as y-cs (y-candystripe), produces a variegated pericarp phenotype. Using probes from the maize p1 gene that cross-hybridize with the sorghum Y gene, we isolated the y-cs allele containing a large insertion element. Our results show that the Y gene is a member of the MYB-transcription factor family. The insertion element, named Candystripe1 (Cs1), is present in the second intron of the Y gene and shares features of the CACTA superfamily of transposons. Cs1 is 23,018 bp in size and is bordered by 20-bp terminal inverted repeat sequences. It generated a 3-bp target site duplication upon insertion within the Y gene and excised from y-cs, leaving a 2-bp footprint in two cases analyzed. Reinsertion of the excised copy of Cs1 was identified by Southern hybridization in the genome of each of seven red pericarp revertant lines tested. Cs1 is the first active transposable element isolated from sorghum. Our analysis suggests that Cs1-homologous sequences are present in low copy number in sorghum and other grasses, including sudangrass, maize, rice, teosinte, and sugarcane. The low copy number and high transposition frequency of Cs1 imply that this transposon could prove to be an efficient gene isolation tool in sorghum.
Resumo:
We describe a multiplex nucleic acid assay that identifies and determines the abundance of four different pathogenic retroviruses (HIV-1, HIV-2, and human T-lymphotrophic virus types I and II). Retroviral DNA sequences are amplified in a single, sealed tube by simultaneous PCR assays, and the resulting amplicons are detected in real time by the hybridization of four differently colored, amplicon-specific molecular beacons. The color of the fluorescence generated in the course of amplification identifies which retroviruses are present, and the number of thermal cycles required for the intensity of each color to rise significantly above background provides an accurate measure of the number of copies of each retroviral sequence that were present originally in the sample. Fewer than 10 retroviral genomes can be detected. Moreover, 10 copies of a rare retrovirus can be detected in the presence of 100,000 copies of an abundant retrovirus. Ninety-six samples can be analyzed in 3 hr on a single plate, and the use of a closed-tube format eliminates crossover contamination. Utilizing previously well characterized clinical samples, we demonstrate that each of the pathogenic retroviruses can be identified correctly and no false positives occur. This assay enables the rapid and reliable screening of donated blood and transplantable tissues.