943 resultados para meat chicken
Resumo:
This survey provides a snap shot of the nutritional content of potato and chicken products sold in fast food and convenience outlets across the island of Ireland.
Resumo:
Sometimes it's hard to tell when burgers and sausages are properly cooked and ready to eat. These meats can contain harmful bacteria throughout and it is important that they are cooked thoroughly to make them safe to eat.
Resumo:
The aim of this study was to evaluate the indirect immunoperoxidase virus neutralization (IPVN) and mouse neutralization test (MNT) to detect antibodies against rabies virus from vaccinated dogs and cattle. The IPVN was set up for the ability to measure 0.5 International Units/ml (IU) of antibody required by the World Health Organization and the Office International des Epizooties as the minimum response for proof of rabies immunization. IPVN was developed and standardized in chicken embryo related (CER) cell line when 141 dog and 110 cattle sera were applied by serial five-fold dilutions (1:5, 1:25, 1:125) as well as the positive and negative reference controls, all added in four adjacent wells, of 96-well microplates. A 50 µl amount of CVS32 strain dilution containing 50-200 TCID50/ml was mixed to each serum dilution, and after 90 min 50 µl of 3 x 10(5) cells/mlcell suspension added to each well. After five days of incubation, the monolayers were fixed and the IPVN test performed. The correlation coefficient between the MNT and IPVN performed in CER cells was r = 0.9949 for dog sera (n = 100) and r = 0.9307 for cattle sera (n = 99), as well as good specificity (94.7%), sensitivity (87.5%), and agreement (96.6%) were also obtained. IPVN technique can adequately identify vaccinated and unvaccinated animals, even from low-responding vaccinated animals, with the advantage of low cost and faster then MNT standard test.
Resumo:
Electron microscopic analysis of heteroduplexes between the most distantly related Xenopus vitellogenin genes (A genes X B genes) has revealed the distribution of homologous regions that have been preferentially conserved after the duplication events that gave rise to the multigene family in Xenopus laevis. DNA sequence analysis was limited to the region downstream of the transcription initiation site of the Xenopus genes A1, B1 and B2 and a comparison with the Xenopus A2 and the major chicken vitellogenin gene is presented. Within the coding regions of the first three exons, nucleotide substitutions resulting in amino acid changes accumulate at a rate similar to that observed in globin genes. This suggests that the duplication event which led to the formation of the A and B ancestral genes in Xenopus laevis occurred about 150 million years ago. Homologous exons of the A1-A2 and B1-B2 gene pairs, which formed about 30 million years ago, show a quite similar sequence divergence. In contrast, A1-A2 homologous introns seem to have evolved much faster than their B1-B2 counterparts.
Resumo:
BACKGROUND: Despite the continuous production of genome sequence for a number of organisms, reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly true for genomes for which there is not a large collection of known gene sequences, such as the recently published chicken genome. We used the chicken sequence to test comparative and homology-based gene-finding methods followed by experimental validation as an effective genome annotation method. RESULTS: We performed experimental evaluation by RT-PCR of three different computational gene finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was computed and each component of it was evaluated. The results showed that de novo comparative methods can identify up to about 700 chicken genes with no previous evidence of expression, and can correctly extend about 40% of homology-based predictions at the 5' end. CONCLUSIONS: De novo comparative gene prediction followed by experimental verification is effective at enhancing the annotation of the newly sequenced genomes provided by standard homology-based methods.
Resumo:
Scaffold or matrix attachment region (S/MAR) genetic elements have previously been proposed to insulate transgenes from repressive effects linked to their site of integration within the host cell genome. We have evaluated their use in various stable transfection settings to increase the production of recombinant proteins such as monoclonal antibodies from Chinese hamster ovary (CHO) cell lines. Using the green fluorescent protein coding sequence, we show that S/MAR elements mediate a dual effect on the population of transfected cells. First, S/MAR elements almost fully abolish the occurrence of cell clones that express little transgene that may result from transgene integration in an unfavorable chromosomal environment. Second, they increase the overall expression of the transgene over the whole range of expression levels, allowing the detection of cells with significantly higher levels of transgene expression. An optimal setting was identified as the addition of a S/MAR element both in cis (on the transgene expression vector) and in trans (co-transfected on a separate plasmid). When used to express immunoglobulins, the S/MAR element enabled cell clones with high and stable levels of expression to be isolated following the analysis of a few cell lines generated without transgene amplification procedures.
Resumo:
The enterococci are important nosocomial pathogens with a remarkable capacity of expressing resistance to several antimicrobial agents. Their ubiquitous nature and resistance to adverse environmental conditions take account for their ability to colonize different habitats and for their potential for easy spreading through the food chain. In the present study we evaluated the distribution of species and antimicrobial susceptibility among enterococcal isolates recovered from food obtained in retail stores in Rio de Janeiro, Brazil. The following species were identified among 167 isolates obtained from poultry meat and 127 from pasteurized milk: Enterococcus faecalis (62.6%), E. casseliflavus (17.3%), E. durans (6.5%), E. gallinarum (3.0%), E. gilvus (2.4%), E. faecium (2.0%), E. hirae (1.4%), and E. sulfureus (1.0%). The overall percentages of antimicrobial resistant isolates were: 31.2 % to tetracycline, 23.8% to erythromycin, 11.3% to streptomycin, 4.3% to chloramphenicol, 3.9% to gentamicin, 1.4% to norfloxacin, 1.1% to imipenem, 0.7% to ciprofloxacin, nitrofurantoin, and penicillin, and 0.4% to ampicillin. Intermediate resistance was detected in frequencies varying from 0.5% for linezolid to 58.2% for erythromycin. None of the isolates showed resistance to glycopeptides. High-level resistance to aminoglycosides was observed in 13.1% of the isolates. Multiresistance was observed in E. faecalis, E. casseliflavus, E. faecium, E. gallinarum, E. durans and E. gilvus.
Resumo:
Leprosy's progression and its maintained endemic status, despite the availability of effective treatments, are not fully understood and recent studies have highlighted the possibility of involved Mycobacterium leprae ambient reservoirs. Wild armadillos can carry leprosy and, because their meat is eaten by humans, development of the disease among armadillo meat consumers has been investigated. This study evaluated the frequency of armadillo meat intake among leprosy patients as well as age and gender matched controls with other skin diseases from a dermatological unit. Armadillo meat consumption among both groups was adjusted by demographic and socioeconomic covariates based on a conditional multiple logistic regression model. One hundred twenty-one cases and 242 controls were evaluated; they differed in socioeconomic variables such as family income, hometown population and access to treated water. The multivariate analysis did not show an association between the intake of armadillo meat and leprosy (odds ratio = 1.07; CI 95% 0.56-2.04), even when only cases with no known contacts were analyzed. We conclude that leprosy is not associated with the intake of armadillo meat in these patients.
Resumo:
In an effort to detect West Nile virus (WNV) in Brazil, we sampled serum from horses and chickens from the Pantanal region of the state of Mato Grosso and tested for flavivirus-reactive antibodies by blocking ELISA. The positive samples were further confirmed for serological evidence of WNV infection in three (8%) of the 38 horses and one (3.2%) of the 31 chickens using an 80% plaque-reduction neutralisation test (PRNT80). These results provide evidence of the circulation of WNV in chickens and horses in Pantanal.
Resumo:
BACKGROUND Recently, some US cohorts have shown a moderate association between red and processed meat consumption and mortality supporting the results of previous studies among vegetarians. The aim of this study was to examine the association of red meat, processed meat, and poultry consumption with the risk of early death in the European Prospective Investigation into Cancer and Nutrition (EPIC). METHODS Included in the analysis were 448,568 men and women without prevalent cancer, stroke, or myocardial infarction, and with complete information on diet, smoking, physical activity and body mass index, who were between 35 and 69 years old at baseline. Cox proportional hazards regression was used to examine the association of meat consumption with all-cause and cause-specific mortality. RESULTS As of June 2009, 26,344 deaths were observed. After multivariate adjustment, a high consumption of red meat was related to higher all-cause mortality (hazard ratio (HR) = 1.14, 95% confidence interval (CI) 1.01 to 1.28, 160+ versus 10 to 19.9 g/day), and the association was stronger for processed meat (HR = 1.44, 95% CI 1.24 to 1.66, 160+ versus 10 to 19.9 g/day). After correction for measurement error, higher all-cause mortality remained significant only for processed meat (HR = 1.18, 95% CI 1.11 to 1.25, per 50 g/d). We estimated that 3.3% (95% CI 1.5% to 5.0%) of deaths could be prevented if all participants had a processed meat consumption of less than 20 g/day. Significant associations with processed meat intake were observed for cardiovascular diseases, cancer, and 'other causes of death'. The consumption of poultry was not related to all-cause mortality. CONCLUSIONS The results of our analysis support a moderate positive association between processed meat consumption and mortality, in particular due to cardiovascular diseases, but also to cancer.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
This directory is for all the meat producers in Iowa.
Resumo:
We have carried out an initial analysis of the dynamics of the recent evolution of the splice-sites sequences on a large collection of human, rodent (mouse and rat), and chicken introns. Our results indicate that the sequences of splice sites are largely homogeneous within tetrapoda. We have also found that orthologous splice signals between human and rodents and within rodents are more conserved than unrelated splice sites, but the additional conservation can be explained mostly by background intron conservation. In contrast, additional conservation over background is detectable in orthologous mammalian and chicken splice sites. Our results also indicate that the U2 and U12 intron classes seem to have evolved independently since the split of mammals and birds; we have not been able to find a convincing case of interconversion between these two classes in our collections of orthologous introns. Similarly, we have not found a single case of switching between AT-AC and GT-AG subtypes within U12 introns, suggesting that this event has been a rare occurrence in recent evolutionary times. Switching between GT-AG and the noncanonical GC-AG U2 subtypes, on the contrary, does not appear to be unusual; in particular, T to C mutations appear to be relatively well tolerated in GT-AG introns with very strong donor sites.
Resumo:
The recent availability of the chicken genome sequence poses the question of whether there are human protein-coding genes conserved in chicken that are currently not included in the human gene catalog. Here, we show, using comparative gene finding followed by experimental verification of exon pairs by RT–PCR, that the addition to the multi-exonic subset of this catalog could be as little as 0.2%, suggesting that we may be closing in on the human gene set. Our protocol, however, has two shortcomings: (i) the bioinformatic screening of the predicted genes, applied to filter out false positives, cannot handle intronless genes; and (ii) the experimental verification could fail to identify expression at a specific developmental time. This highlights the importance of developing methods that could provide a reliable estimate of the number of these two types of genes.
Resumo:
Background: Despite the continuous production of genome sequence for a number of organisms,reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularlytrue for genomes for which there is not a large collection of known gene sequences, such as therecently published chicken genome. We used the chicken sequence to test comparative andhomology-based gene-finding methods followed by experimental validation as an effective genomeannotation method.Results: We performed experimental evaluation by RT-PCR of three different computational genefinders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram wascomputed and each component of it was evaluated. The results showed that de novo comparativemethods can identify up to about 700 chicken genes with no previous evidence of expression, andcan correctly extend about 40% of homology-based predictions at the 5' end.Conclusions: De novo comparative gene prediction followed by experimental verification iseffective at enhancing the annotation of the newly sequenced genomes provided by standardhomology-based methods.