901 resultados para matrix inversion
Resumo:
In population pharmacokinetic studies, the precision of parameter estimates is dependent on the population design. Methods based on the Fisher information matrix have been developed and extended to population studies to evaluate and optimize designs. In this paper we propose simple programming tools to evaluate population pharmacokinetic designs. This involved the development of an expression for the Fisher information matrix for nonlinear mixed-effects models, including estimation of the variance of the residual error. We implemented this expression as a generic function for two software applications: S-PLUS and MATLAB. The evaluation of population designs based on two pharmacokinetic examples from the literature is shown to illustrate the efficiency and the simplicity of this theoretic approach. Although no optimization method of the design is provided, these functions can be used to select and compare population designs among a large set of possible designs, avoiding a lot of simulations.
Resumo:
Purpose: The phenotype of vascular smooth muscle cells (SMCs) is altered in several arterial pathologies, including the neointima formed after acute arterial injury. This study examined the time course of this phenotypic change in relation to changes in the amount and distribution of matrix glycosaminoglycans. Methods: The immunochemical staining of heparan sulphates (HS) and chondroitin sulphates (CS) in the extracellular matrix of the arterial wall was examined at early points after balloon catheter injury of the rabbit carotid artery. SMC phenotype was assessed by means of ultrastructural morphometry of the cytoplasmic volume fraction of myofilaments. The proportions of cell and matrix components in the media were analyzed with similar morphometric techniques. Results: HS and CS were shown in close association with SMCs of the uninjured arterial media as well as being more widespread within the matrix. Within 6 hours after arterial injury, there was loss of the regular pericellular distribution of both HS and CS, which was associated with a significant expansion in the extracellular space. This preceded the change in ultrastructural phenotype of the SMCs. The glycosaminoglycan loss was most exaggerated at 4 days, after which time the HS and CS reappeared around the medial SMCs. SMCs of the recovering media were able to rapidly replace their glycosaminoglycans, whereas SMCs of the developing neointima failed to produce HS as readily as they produced CS. Conclusions: These studies indicate that changes in glycosaminoglycans of the extracellular matrix precede changes in SMC phenotype after acute arterial injury. In the recovering arterial media, SMCs replace their matrix glycosaminoglycans rapidly, whereas the newly established neointima fails to produce similar amounts of heparan sulphates.
Resumo:
We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. Wootters's concurrence is defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superoperator to a universal inverter, which acts on quantum systems of arbitrary dimension, and we introduce the corresponding generalized concurrence for joint pure states of D-1 X D-2 bipartite quantum systems. We call this generalized concurrence the I concurrence to emphasize its relation to the universal inverter. The universal inverter, which is a positive, but not completely positive superoperator, is closely related to the completely positive universal-NOT superoperator, the quantum analogue of a classical NOT gate. We present a physical realization of the universal-NOT Superoperator.
Resumo:
The cost and risk associated with mineral exploration in Australia increases significantly as companies move into deeper regolith-covered terrain. The ability to map the bedrock and the depth of weathering within an area has the potential to decrease this risk and increase the effectiveness of exploration programs. This paper is the second in a trilogy concerning the Grant's Patch area of the Eastern Goldfields. The recent development of the VPmg potential field inversion program in conjunction with the acquisition of high-resolution gravity data over an area with extensive drilling provided an opportunity to evaluate three-dimensional gravity inversion as a bedrock and regolith mapping tool. An apparent density model of the study area was constructed, with the ground represented as adjoining 200 m by 200 m vertical rectangular prisms. During inversion VPmg incrementally adjusted the density of each prism until the free-air gravity response of the model replicated the observed data. For the Grant's Patch study area, this image of the apparent density values proved easier to interpret than the Bouguer gravity image. A regolith layer was introduced into the model and realistic fresh-rock densities assigned to each basement prism according to its interpreted lithology. With the basement and regolith densities fixed, the VPmg inversion algorithm adjusted the depth to fresh basement until the misfit between the calculated and observed gravity response was minimised. The resulting geometry of the bedrock/regolith contact largely replicated the base of weathering indicated by drilling with predicted depth of weathering values from gravity inversion typically within 15% of those logged during RAB and RC drilling.
Resumo:
A series of metal-matrix composites were formed by extrusion freeform, fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.
Resumo:
Loblolly pine ( Pinus taeda L.) seeds from sources with a mild climate under maritime influence (North Carolina) required shorter moist chilling to achieve maximum germination vigor than seeds from sources with a harsher continental climate (Oklahoma). Solid matrix priming (SMP) for 6 d achieved as much as 60 d of moist chilling to improve rapidity, synchrony and completeness of germination for three of the four families studied. SMP after moist chilling increased the rapidity, synchrony and completeness of germination. The benefit of SMP was greatest for non-stratified seeds and the benefit decreased with length of moist chilling. In general, delaying planting for one week after SMP had minor effects on germination when seeds were kept in the SMP matrix at 4 degreesC. Delayed planting after SMP can increase germination rapidity and synchrony of seeds that have received long moist chilling and reduce the benefit of SMP in non-moist-chilled seeds.
Resumo:
C,C-Dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene NS-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-,beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G*) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-Bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C= C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G*) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.
Resumo:
Darwin's paradigm holds that the diversity of present-day organisms has arisen via a process of genetic descent with modification, as on a bifurcating tree. Evidence is accumulating that genes are sometimes transferred not along lineages but rather across lineages. To the extent that this is so, Darwin's paradigm can apply only imperfectly to genomes, potentially complicating or perhaps undermining attempts to reconstruct historical relationships among genomes (i.e., a genome tree). Whether most genes in a genome have arisen via treelike (vertical) descent or by lateral transfer across lineages can be tested if enough complete genome sequences are used. We define a phylogenetically discordant sequence (PDS) as an open reading frame (ORF) that exhibits patterns of similarity relationships statistically distinguishable from those of most other ORFs in the same genome. PDSs represent between 6.0 and 16.8% (mean, 10.8%) of the analyzable ORFs in the genomes of 28 bacteria, eight archaea, and one eukaryote (Saccharomyces cerevisiae). In this study we developed and assessed a distance-based approach, based on mean pairwise sequence similarity, for generating genome trees. Exclusion of PDSs improved bootstrap support for basal nodes but altered few topological features, indicating that there is little systematic bias among PDSs. Many but not all features of the genome tree from which PDSs were excluded are consistent with the 16S rRNA tree.