992 resultados para matemática computacional
Resumo:
La delimitación de finalidades es un dato esencial para cualquier plan de formación: por ello, las finalidades de un currículo de matemáticas lo caracterizan en su extensión y alcance, y constituyen parte determinante en el proceso de su planificación.
Resumo:
El desarrollo de las habilidades para un conocimiento estadístico necesario es posible desarrollarlo y fortalecerlo por medio de variados recursos didácticos dispuestos para la enseñanza y aprendizaje. Dentro de los recursos disponibles es el texto de matemática el más utilizado por profesores y estudiantes. El texto debe entregar herramientas que permita a los estudiantes desarrollar una alfabetización matemática, realizando una focalización más explícita en los conocimientos, comprensión y habilidades requeridas para funcionar efectivamente en la vida diaria (PISA Chile, 2009).
Resumo:
Con este material pretendemos divulgar la matemática implicada en los números de identificación tales como NIF, ISBN, EAN... La aritmética modular se utiliza para lijar el dígito de control, y algoritmos sencillos permiten al ordenador descubrir muchas falsificaciones o posibles errores en el número de identificación de la tarjeta, producto o persona. Los esquemas de codificación más usuales detectan todos los errores simples, esto es, cuando se confunde un dígito por otro pero, sin embargo, no descubren otros tipos de errores que, aunque son menos frecuentes, son posibles. El álgebra y la divisibilidad ayudan a elegir esquemas de codificación mas seguros.
Resumo:
En la presente contribución intentamos evidenciar cómo la geometría a lo largo de toda su historia ha desempeñado un papel fundamental interactivo con la ciencia natural, en particular con la física, y más en concreto aún con la mecánica. En la primera parte esbozamos nuestra visión de esta intima interrelación desde el alba de la geometría en China, Mesopotamia y Egipto hasta nuestros días.
Resumo:
Uno de los objetivos más importantes de la enseñanza es conseguir cambiar las ideas previas erróneas de los estudiantes. "En este articulo, se diseñan dos metodologías didácticas (resolución de problemas y descubrimiento dirigido) que fueron experimentadas durante veinte clases por dos grupos de alumnos de enseñanza secundaria mientras otro grupo utilizaba una metodología expositiva tradicional. Controladas las principales variables intervinientes, los resultados obtenidos indican que un método basado exclusivamente en la resolución de problemas produce un nivel de cambio conceptual y de rendimiento algo inferior al producido por un método más orientado aunque ambos métodos superan al método expositivo tradicional.
Resumo:
La importante revista inglesa Nature, en su Volumen 340 del mes de Julio de 1989, publica interesantes resultados referentes a una encuesta realizada simultáneamente en los Estados Unidos de Norteamérica y en Inglaterra, para averiguar el concepto que el hombre común tiene de la ciencia y de sus métodos, así como del interés por la misma y del grado de conocimientos referentes a algunas de sus realizaciones. La encuesta se hizo sobre una muestra de unos dos mil norteamericanos y otros tantos ingleses, tomados al azar entre mayores de 18 años.
Resumo:
La calculadora electrónica es un excelente recurso didáctico que hace mucho más que las operaciones básicas. Usarla como “calculadora” nada más sería desperdiciar una oportunidad de hacer la matemática más atractiva para muchos estudiantes. Con ella es posible por ejemplo, experimentar con patrones numéricos, explorar relaciones funcionales, desarrollar conceptos y resolver problemas con datos reales.
Resumo:
La construcción de la didáctica de las matemáticas como área de conocimiento científico trata de romper con la ilusión de transparencia que emerge del dominio de realidad configurado por los hechos didácticos. En este trabajo analizaremos la transparencia de los hechos didácticos a partir de diferentes investigaciones llevadas a cabo en esta área de conocimiento. En ellas se muestra cómo el análisis epistemológico de los objetos matemáticos de enseñanza es una condición necesaria para poder interpretar racionalmente los hechos y fenómenos didácticos.
Resumo:
Me resulta muy agradable poder comentar la obra matemática de un gran amigo, Luis A. Santaló, con quien me encontré por primera vez siendo los dos estudiantes en Madrid, y con el que siempre he mantenido una entrañable amistad.
Resumo:
La simulación computacional de problemas de probabilidad permite obtener sus soluciones a través de la frecuencia relativa del número de éxitos obtenidos en los n experimentos realizados. La ley de los grandes números respalda una buena aproximación de la probabilidad teórica de un evento a través de la repetición sucesiva de experimentos. A continuación se presentan una serie de problemas probabilísticos con una posible simulación realizada en los paquetes Fathom y Excel. La solución teórica de estos problemas requiere conocimientos básicos de probabilidad, por lo que las simulaciones realizadas buscan dar una propuesta de solución a estos problemas sin tener que acudir al formalismo matemático.
Resumo:
Aún si su trabajo parece no estar vinculado con la matemática, Mathematica puede ser de su interés. Con este recurso el arduo trabajo del cálculo -numérico o simbólico- resulta cosa del pasado, el desarrollo de materiales didácticos tiene nuevas y revolucionarias herramientas, las aplicaciones de modelos matemáticos pueden producir resultados sin ocuparse de la implementación computacional de complicados algoritmos matemáticos, en suma, con las computadoras y Mathematica se multiplican las capacidades para entender, desarrollar y aplicar las matemáticas y ciencias afines.
Resumo:
Relatório de Estágio apresentado para obtenção do grau de Mestre na área de Ensino do 1.º ciclo e do 2.º ciclo do Ensino Básico.
Resumo:
Descrição e análise de projeto de construção e preparação da exploração de tarefas de modelação matemática em estatística: uma experiência no ensino profissional.
Resumo:
Um dos maiores avanços científicos do século XX foi o desenvolvimento de tecnologia que permite a sequenciação de genomas em larga escala. Contudo, a informação produzida pela sequenciação não explica por si só a sua estrutura primária, evolução e seu funcionamento. Para esse fim novas áreas como a biologia molecular, a genética e a bioinformática são usadas para estudar as diversas propriedades e funcionamento dos genomas. Com este trabalho estamos particularmente interessados em perceber detalhadamente a descodificação do genoma efectuada no ribossoma e extrair as regras gerais através da análise da estrutura primária do genoma, nomeadamente o contexto de codões e a distribuição dos codões. Estas regras estão pouco estudadas e entendidas, não se sabendo se poderão ser obtidas através de estatística e ferramentas bioinfomáticas. Os métodos tradicionais para estudar a distribuição dos codões no genoma e seu contexto não providenciam as ferramentas necessárias para estudar estas propriedades à escala genómica. As tabelas de contagens com as distribuições de codões, assim como métricas absolutas, estão actualmente disponíveis em bases de dados. Diversas aplicações para caracterizar as sequências genéticas estão também disponíveis. No entanto, outros tipos de abordagens a nível estatístico e outros métodos de visualização de informação estavam claramente em falta. No presente trabalho foram desenvolvidos métodos matemáticos e computacionais para a análise do contexto de codões e também para identificar zonas onde as repetições de codões ocorrem. Novas formas de visualização de informação foram também desenvolvidas para permitir a interpretação da informação obtida. As ferramentas estatísticas inseridas no modelo, como o clustering, análise residual, índices de adaptação dos codões revelaram-se importantes para caracterizar as sequências codificantes de alguns genomas. O objectivo final é que a informação obtida permita identificar as regras gerais que governam o contexto de codões em qualquer genoma.
Resumo:
Tal como o título indica, esta tese estuda problemas de cobertura com alcance limitado. Dado um conjunto de antenas (ou qualquer outro dispositivo sem fios capaz de receber ou transmitir sinais), o objectivo deste trabalho é calcular o alcance mínimo das antenas de modo a que estas cubram completamente um caminho entre dois pontos numa região. Um caminho que apresente estas características é um itinerário seguro. A definição de cobertura é variável e depende da aplicação a que se destina. No caso de situações críticas como o controlo de fogos ou cenários militares, a definição de cobertura recorre à utilização de mais do que uma antena para aumentar a eficácia deste tipo de vigilância. No entanto, o alcance das antenas deverá ser minimizado de modo a manter a vigilância activa o maior tempo possível. Consequentemente, esta tese está centrada na resolução deste problema de optimização e na obtenção de uma solução particular para cada caso. Embora este problema de optimização tenha sido investigado como um problema de cobertura, é possível estabelecer um paralelismo entre problemas de cobertura e problemas de iluminação e vigilância, que são habitualmente designados como problemas da Galeria de Arte. Para converter um problema de cobertura num de iluminação basta considerar um conjunto de luzes em vez de um conjunto de antenas e submetê-lo a restrições idênticas. O principal tema do conjunto de problemas da Galeria de Arte abordado nesta tese é a 1-boa iluminação. Diz-se que um objecto está 1-bem iluminado por um conjunto de luzes se o invólucro convexo destas contém o objecto, tornando assim este conceito num tipo de iluminação de qualidade. O objectivo desta parte do trabalho é então minimizar o alcance das luzes de modo a manter uma iluminação de qualidade. São também apresentadas duas variantes da 1-boa iluminação: a iluminação ortogonal e a boa !-iluminação. Esta última tem aplicações em problemas de profundidade e visualização de dados, temas que são frequentemente abordados em estatística. A resolução destes problemas usando o diagrama de Voronoi Envolvente (uma variante do diagrama de Voronoi adaptada a problemas de boa iluminação) é também proposta nesta tese.