982 resultados para mRNA differential display


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To study the expression and the function of the 11beta-hydroxysteroid dehydrogenase enzyme 1 (11beta-HSD1) and 2 (11beta-HSD2) in placenta and the fetal membranes from pregnancies with intrauterine growth restriction (IUGR) and from controls. METHODS: Amnion, chorion, decidua and cotyledon were separated from placenta; mRNA was analyzed by TaqMan real-time technology and proteins by Western blot; enzyme activities were measured by the conversion of 3H-cortisol to 3H-cortisone and vice versa. RESULTS: Predominant mRNA expression (p < 0.001) was found for 11beta-HSD1 in chorion and for 11beta-HSD2 in decidua and cotyledon. In pregnancies with IUGR, 11beta-HSD1 was upregulated in chorion (mean DeltaCt 11beta-HSD:18S mRNA 193.5 vs. 103.0 in controls respectively, p < 0.05) and 11beta-HSD2 was downregulated in decidua (mean DeltaCt 11beta-HSD2:18S mRNA 0.18 vs. 15.88 in controls respectively, p < 0.05). 11beta-HSD1 protein levels were reduced in amnion and 11beta-HSD1 and 11beta-HSD2 oxidase activity in decidua and cotyledon were reduced from pregnancies with IUGR. CONCLUSION: Reduced synthesis or activity of 11beta-HSD1 or 2 in cases of IUGR is shown in some but not in all tissues. The local mRNA expression of 11beta-HSD1 in chorion may reflect a mechanism on the post-transcriptional gene regulation to stimulate the formation of cortisone in IUGR. To provoke increasing activity with oxidase stimulators could be a future therapy in cases of IUGR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport of lipids across mammary gland epithelial cells (MEC) determines milk lipid content and composition. We investigated the expression of lipid transporters and their regulators in comparison to blood metabolites during lactation and dry period (DP) in dairy cows. Repeated mammary gland biopsies and blood samples were taken from 10 animals at 7 stages of the pregnancy-lactation cycle. Expression levels of the specific mRNAs were determined by quantitative reverse transcription-PCR, whereas ABCA1 was localized by immunohistochemistry. Blood serum metabolites were determined by common enzymatic chemistries. Elevated mRNA profiles of ABCA1 and ABCA7 were found during DP as compared with lactation and were inversely associated with blood cholesterol levels. Elevated levels of ABCG2, NPC1, SREBP1, SREBP2, LXR alpha, and PPAR gamma were found postpartum, whereas ABCG1 did not differ between the functional stages of the mammary gland. The ABCA1 protein was localized in MEC and showed differential activity between DP and lactation suggesting a role of ABCA1 in the removal of excess cellular cholesterol from MEC during the DP. The expression profiles of ABCA7 and NPC1 may reflect a role of these transporters in the clearance of apoptotic cells and the intracellular redistribution of cholesterol, respectively. Regulation of lipid transporters in the mammary gland is partially associated with transcription factors that control lipid homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential expression of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban (PLB) has been shown in heart failure and atrial arrhythmias. We investigated the influence of volume overload and age on their expression in pediatric atrial myocardium. Right atrial specimens from 18 children with volume overloaded right atrium (VO) and 12 patients without overload were studied. Each group was further divided into patients less than and older than 12 months of age. Only in the younger patients SERCA2a was significantly reduced in the VO group. In younger patients PLB mRNA level tended to be lower in VO. The PLB:SERCA protein ratio was significantly reduced in the VO group. Age itself did not influence the SERCA2a and PLB expression, if the hemodynamic overload was not taken into account. This study is the first to show a combined influence of volume overload and age on atrial SERCA2a expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primaquine (PQ). a clinically important derivative of 8-aminoquinoline used against the hepatic stages (hypnozoites) of Plasmodium vivax and Plasmodium ova Ie. was studied to evaluate and compare between mRNA expression. and biochemical and histological parameters of hepatic stress in adult Swiss mice (Mus musculus). Following single oral dose of PQ (40 mglkg. bw). alanine aminotransferase (ALT) and aspartate aminotransferase (AST) along with hematoxylin and eosin stained liver sections did not show any signs of hepatic stress at 6. 12 and 24 h except for ALT activity at 6 h. However. analysis at RNA transcript level revealed consistent and significant deregulation (p<0.01 and twofold) of 16 probes corresponding to important cellular processes such as protein transportation. transcription regulation. intracellular signaling. protein synthesis, hematopoiesis, cell adhesion and cell proliferation. Pathway analysis identified large number of affected genes corresponding to 40 Gene Ontology terms having a z score greaibr than 2. These results indicate that PQ at high doses may affect gene expression in liver and may produce undesirable outcomes if consumed for longer durations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: Airway mucus accumulation is associated with indoor irritant and allergen exposure in horses with recurrent airway obstruction (RAO). Epidermal growth factor receptor (EGFR) and a chloride channel (calcium activated, family member 1; CLCA1) are key signalling molecules involved in mucin gene expression. OBJECTIVES: We hypothesised that exposure to irritants and aeroallergens would lead to increased expression of the mucin gene eqMUC5AC and increased stored mucosubstance in the airways of RAO-affected horses, associated with increased neutrophils and CLCA1 and EGFR mRNA levels. METHODS: We performed quantitative RT-PCR of eqMUC5AC, CLCA1 and EGFR; volume density measurements of intraepithelial mucosubstances; and cytological differentiation of intraluminal inflammatory cells in small cartilaginous airways from cranial left and right and caudal left and right lung lobes of 5 clinically healthy and 5 RAO-affected horses that had been exposed to indoor stable environment for 5 days before euthanasia. RESULTS: Neutrophils were increased in RAO-affected horses compared to clinically healthy controls. EqMUC5AC mRNA levels were positively correlated with both CLCA1 and EGFR mRNA levels in RAO-affected horses but only with CLCA1 in controls. The relationship between eqMUC5AC and CLCA1 differed in the 2 groups of horses with RAO-affected animals overexpressing CLCA1 in relation to eqMUC5AC. CONCLUSIONS: These data implicate CLCA1 as a signalling molecule in the expression of eqMUC5AC in horses but also suggest differential regulation by CLCA1 and EGFR between horses with RAO and those with milder degrees of airway inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, mice were vaccinated intranasally with recombinant N. caninum protein disulphide isomerase (NcPDI) emulsified in cholera toxin (CT) or cholera toxin subunit B (CTB) from Vibrio cholerae. The effects of vaccination were assessed in the murine nonpregnant model and the foetal infection model, respectively. In the nonpregnant mice, previous results were confirmed, in that intranasal vaccination with recNcPDI in CT was highly protective, and low cerebral parasite loads were noted upon real-time PCR analysis. Protection was accompanied by an IgG1-biased anti-NcPDI response upon infection and significantly increased expression of Th2 (IL-4/IL-10) and IL-17 transcripts in spleen compared with corresponding values in mice treated with CT only. However, vaccination with recNcPDI in CT did not induce significant protection in dams and their offspring. In the dams, increased splenic Th1 (IFN-γ/IL-12) and Th17 mRNA expressions was detected. No protection was noted in the groups vaccinated with recNcPDI emulsified in CTB. Thus, vaccination with recNcPDI in CT in nonpregnant mice followed by challenge infection induced a protective Th2-biased immune response, while in the pregnant mouse model, the same vaccine formulation resulted in a Th1-biased inflammatory response and failed to protect dams and their progeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of chromosome 10 represents the most common cytogenetic abnormality in high grade gliomas (glioblastoma multiforme). To identify genes involved in the malignant progression of human gliomas, a subtractive hybridization was performed between a tumorigenic glioblastoma cell line (LG11) and a nontumorgenic hybrid cell (LG11.3) containing an introduced chromosome 10. LG11 mRNA was subtracted from LG11.3 cDNA to produce cDNA probes enriched for sequences whose expression differs quantitatively from the parental tumorigenic cells. Both known and novel sequences were identified as a result of the subtraction. Northern blot analysis was then used to confirm differential expression of several subtracted clones. One novel clone, clone 17, identified a 2.6 kb message that showed a consistent two to four fold increase in expression in the LG11.3 nontumorigenic cells. Clone 17 (340 bp) was used successfully to screen for a near full-length version, RIG (regulated in glioma), which was 2,569 bp in size. The RIG cDNA sequence showed homology to clone 17 and to an anonymous EST (IB666), but to no previously identified genes. This screening effort also identified several independent clones representing novel sequences, most of which failed to show increased expression in the nontumorigenic GBM cells. Tissue distribution studies of RIG indicated highest levels of expression in human brain with appreciably lower levels in heart and lung. In vitro transcription and translation experiments demonstrated the ability of RIG to direct the synthesis of a 13 kD protein product. However, open reading frame analysis revealed no identify with previously described motifs or any known proteins. Using a combination of somatic cell hybrid panels and in situ hybridization, the RIG gene was mapped to chromosome 11p14-11p15. Further study of RIG and related gene products may provide insight into the negative regulation of glial oncogenesis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K-m = 0.1-0.3 mM), lower for Pro (K-m = 0.4-1 mM), and lowest for gamma-aminobutyric acid (K-m = 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the beta-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. beta-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological effect of oxidatively damaged RNA, unlike oxidatively damaged DNA, has rarely been investigated, although it poses a threat to any living cell. Here we report on the effect of the commonly known RNA base-lesions 8-oxo-rG, 8-oxo-rA, ε-rC, ε-rA, 5-HO-rC, 5-HO-rU and the RNA abasic site (rAS) on ribosomal translation. To this end we have developed an in vitro translation assay based on the mRNA display methodology. A short synthetic mRNA construct containing the base lesion in a predefined position of the open reading frame was 32P-labeled at the 5′-end and equipped with a puromycin unit at the 3′-end. Upon in vitro translation in rabbit reticulocyte lysates, the encoded peptide chain is transferred to the puromycin unit and the products analyzed by gel electrophoresis. Alternatively, the unlabeled mRNA construct was used and incubated with 35S-methionine to prove peptide elongation of the message. We find that all base-lesions interfere substantially with ribosomal translation. We identified two classes, the first containing modifications at the base coding edge (ε-rC, ε-rA and rAS) which completely abolish peptide synthesis at the site of modification, and the second consisting of 8-oxo-rG, 8-oxo-rA, 5-HO-rC and 5-HO-rU that significantly retard full-length peptide synthesis, leading to some abortive peptides at the site of modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract AIM: To investigate the inflammatory response of dental pulp fibroblasts and the respective explants to whole saliva. METHODOLOGY: Explants from human and porcine dental pulp tissue and isolated dental pulp fibroblasts were used to investigate the inflammatory response to sterile saliva. Cytokine and chemokine expression was assessed by RT-PCR. Western blot analysis and pharmacologic inhibitors were used to determine the involvement of signalling pathways. RESULTS: Dental pulp explants of human and porcine origin exposed to human saliva exhibited no major changes of IL-6 and IL-8 mRNA expression (P > 0.05). In contrast, isolated porcine and human dental pulp fibroblasts, when stimulated with human saliva, exhibited a vastly increased expression of IL-6 and IL-8 mRNA (P < 0.05). In pulp fibroblasts, saliva also increased the expression of other cytokines and chemokines via activation of NFkappaB, ERK and p38 signalling. Notably, a significantly reduced inflammatory response was elicited when pulp fibroblasts were transiently exposed to saliva. CONCLUSIONS: Saliva has a potential impact on inflammation of dental pulp fibroblasts in vitro but not when cells are embedded in the intrinsic extracellular matrix of the explant tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies of differential gene-expressions have been conducted between two given conditions. The two-condition experimental (TCE) approach is simple in that all genes detected display a common differential expression pattern responsive to a common two-condition difference. Therefore, the genes that are differentially expressed under the other conditions other than the given two conditions are undetectable with the TCE approach. In order to address the problem, we propose a new approach called multiple-condition experiment (MCE) without replication and develop corresponding statistical methods including inference of pairs of conditions for genes, new t-statistics, and a generalized multiple-testing method for any multiple-testing procedure via a control parameter C. We applied these statistical methods to analyze our real MCE data from breast cancer cell lines and found that 85 percent of gene-expression variations were caused by genotypic effects and genotype-ANAX1 overexpression interactions, which agrees well with our expected results. We also applied our methods to the adenoma dataset of Notterman et al. and identified 93 differentially expressed genes that could not be found in TCE. The MCE approach is a conceptual breakthrough in many aspects: (a) many conditions of interests can be conducted simultaneously; (b) study of association between differential expressions of genes and conditions becomes easy; (c) it can provide more precise information for molecular classification and diagnosis of tumors; (d) it can save lot of experimental resources and time for investigators.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the effects of the external environment on bacterial gene expression can provide valuable insights into an array of cellular mechanisms including pathogenesis, drug resistance, and, in the case of Mycobacterium tuberculosis, latency. Because of the absence of poly(A)+ mRNA in prokaryotic organisms, studies of differential gene expression currently must be performed either with large amounts of total RNA or rely on amplification techniques that can alter the proportional representation of individual mRNA sequences. We have developed an approach to study differences in bacterial mRNA expression that enables amplification by the PCR of a complex mixture of cDNA sequences in a reproducible manner that obviates the confounding effects of selected highly expressed sequences, e.g., ribosomal RNA. Differential expression using customized amplification libraries (DECAL) uses a library of amplifiable genomic sequences to convert total cellular RNA into an amplified probe for gene expression screens. DECAL can detect 4-fold differences in the mRNA levels of rare sequences and can be performed on as little as 10 ng of total RNA. DECAL was used to investigate the in vitro effect of the antibiotic isoniazid on M. tuberculosis, and three previously uncharacterized isoniazid-induced genes, iniA, iniB, and iniC, were identified. The iniB gene has homology to cell wall proteins, and iniA contains a phosphopantetheine attachment site motif suggestive of an acyl carrier protein. The iniA gene is also induced by the antibiotic ethambutol, an agent that inhibits cell wall biosynthesis by a mechanism that is distinct from isoniazid. The DECAL method offers a powerful new tool for the study of differential gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal signaling requires that synaptic proteins be appropriately localized within the cell and regulated there. In mammalian neurons, polyribosomes are found not just in the cell body, but also in dendrites where they are concentrated within or beneath the dendritic spine. The α subunit of Ca2+-calmodulin-dependent protein kinase II (CaMKIIα) is one of only five mRNAs known to be present within the dendrites, as well as in the soma of neurons. This targeted subcellular localization of the mRNA for CaMKIIα provides a possible cell biological mechanism both for controlling the distribution of the cognate protein and for regulating independently the level of protein expression in individual dendritic spines. To characterize the cis-acting elements involved in the localization of dendritic mRNA we have produced two lines of transgenic mice in which the CaMKIIα promoter is used to drive the expression of a lacZ transcript, which either contains or lacks the 3′-untranslated region of the CaMKIIα gene. Although both lines of mice show expression in forebrain neurons that parallels the expression of the endogenous CaMKIIα gene, only the lacZ transcripts bearing the 3′-untranslated region are localized to dendrites. The β-galactosidase protein shows a variable level of expression along the dendritic shaft and within dendritic spines, which suggests that neurons can control the local biochemistry of the dendrite either through differential localization of the mRNA or variations in the translational efficiency at different sites along the dendrite.