947 resultados para linear programming applications


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generalised transportation problem (GTP) is an extension of the linear Hitchcock transportation problem. However, it does not have the unimodularity property, which means the linear programming solution (like the simplex method) cannot guarantee to be integer. This is a major difference between the GTP and the Hitchcock transportation problem. Although some special algorithms, such as the generalised stepping-stone method, have been developed, but they are based on the linear programming model and the integer solution requirement of the GTP is relaxed. This paper proposes a genetic algorithm (GA) to solve the GTP and a numerical example is presented to show the algorithm and its efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper explores the use of the optimization procedures in SAS/OR software with application to the ordered weight averaging (OWA) operators of decision-making units (DMUs). OWA was originally introduced by Yager (IEEE Trans Syst Man Cybern 18(1):183-190, 1988) has gained much interest among researchers, hence many applications such as in the areas of decision making, expert systems, data mining, approximate reasoning, fuzzy system and control have been proposed. On the other hand, the SAS is powerful software and it is capable of running various optimization tools such as linear and non-linear programming with all type of constraints. To facilitate the use of OWA operator by SAS users, a code was implemented. The SAS macro developed in this paper selects the criteria and alternatives from a SAS dataset and calculates a set of OWA weights. An example is given to illustrate the features of SAS/OWA software. © Springer-Verlag 2009.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Financial institutes are an integral part of any modern economy. In the 1970s and 1980s, Gulf Cooperation Council (GCC) countries made significant progress in financial deepening and in building a modern financial infrastructure. This study aims to evaluate the performance (efficiency) of financial institutes (banking sector) in GCC countries. Since, the selected variables include negative data for some banks and positive for others, and the available evaluation methods are not helpful in this case, so we developed a Semi Oriented Radial Model to perform this evaluation. Furthermore, since the SORM evaluation result provides a limited information for any decision maker (bankers, investors, etc...), we proposed a second stage analysis using classification and regression (C&R) method to get further results combining SORM results with other environmental data (Financial, economical and political) to set rules for the efficient banks, hence, the results will be useful for bankers in order to improve their bank performance and to the investors, maximize their returns. Mainly there are two approaches to evaluate the performance of Decision Making Units (DMUs), under each of them there are different methods with different assumptions. Parametric approach is based on the econometric regression theory and nonparametric approach is based on a mathematical linear programming theory. Under the nonparametric approaches, there are two methods: Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH). While there are three methods under the parametric approach: Stochastic Frontier Analysis (SFA); Thick Frontier Analysis (TFA) and Distribution-Free Analysis (DFA). The result shows that DEA and SFA are the most applicable methods in banking sector, but DEA is seem to be most popular between researchers. However DEA as SFA still facing many challenges, one of these challenges is how to deal with negative data, since it requires the assumption that all the input and output values are non-negative, while in many applications negative outputs could appear e.g. losses in contrast with profit. Although there are few developed Models under DEA to deal with negative data but we believe that each of them has it is own limitations, therefore we developed a Semi-Oriented-Radial-Model (SORM) that could handle the negativity issue in DEA. The application result using SORM shows that the overall performance of GCC banking is relatively high (85.6%). Although, the efficiency score is fluctuated over the study period (1998-2007) due to the second Gulf War and to the international financial crisis, but still higher than the efficiency score of their counterpart in other countries. Banks operating in Saudi Arabia seem to be the highest efficient banks followed by UAE, Omani and Bahraini banks, while banks operating in Qatar and Kuwait seem to be the lowest efficient banks; this is because these two countries are the most affected country in the second Gulf War. Also, the result shows that there is no statistical relationship between the operating style (Islamic or Conventional) and bank efficiency. Even though there is no statistical differences due to the operational style, but Islamic bank seem to be more efficient than the Conventional bank, since on average their efficiency score is 86.33% compare to 85.38% for Conventional banks. Furthermore, the Islamic banks seem to be more affected by the political crisis (second Gulf War), whereas Conventional banks seem to be more affected by the financial crisis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper explores the use of the optimization procedures in SAS/OR software with application to the contemporary logistics distribution network design using an integrated multiple criteria decision making approach. Unlike the traditional optimization techniques, the proposed approach, combining analytic hierarchy process (AHP) and goal programming (GP), considers both quantitative and qualitative factors. In the integrated approach, AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, a GP model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. To facilitate the use of integrated multiple criteria decision making approach by SAS users, an ORMCDM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear programming models based on the selected GP model. An example is given to illustrate how one could use the code to design the logistics distribution network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integer-valued data envelopment analysis (DEA) with alternative returns to scale technology has been introduced and developed recently by Kuosmanen and Kazemi Matin. The proportionality assumption of their introduced "natural augmentability" axiom in constant and nondecreasing returns to scale technologies makes it possible to achieve feasible decision-making units (DMUs) of arbitrary large size. In many real world applications it is not possible to achieve such production plans since some of the input and output variables are bounded above. In this paper, we extend the axiomatic foundation of integer-valuedDEAmodels for including bounded output variables. Some model variants are achieved by introducing a new axiom of "boundedness" over the selected output variables. A mixed integer linear programming (MILP) formulation is also introduced for computing efficiency scores in the associated production set. © 2011 The Authors. International Transactions in Operational Research © 2011 International Federation of Operational Research Societies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some aspects of design of the discriminant functions that in the best way separate points of predefined final sets are considered. The concept is introduced of the nested discriminant functions which allow to separate correctly points of any of the final sets. It is proposed to apply some methods of non-smooth optimization to solve arising extremal problems efficiently.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we consider a primal-dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A teoria de jogos modela estratégias entre agentes (jogadores), os quais possuem recompensas ao fim do jogo conforme suas ações. O melhor par de estratégias para os jogadores constitui uma solução de equilíbrio. Porém, nem sempre se consegue estimar os dados do problema. Diante disso, os parâmetros incertos presentes em modelos de jogos são formalizados pela teoria fuzzy. Assim, a teoria fuzzy auxilia a teoria de jogos, formando jogos fuzzy. Dessa forma, parâmetros, como as recompensas, tornam-se números fuzzy. Mais ainda, quando há incerteza na representação desses números fuzzy utilizam-se os números fuzzy intervalares. Então, neste trabalho modelos de jogos fuzzy intervalares são analisados e métodos computacionais são desenvolvidos para a resolução desses jogos. Por fim, realizam-se simulações de programação linear para observar melhor a aplicação das teorias estudadas e avaliar a proposta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The municipal management in any country of the globe requires planning and allocation of resources evenly. In Brazil, the Law of Budgetary Guidelines (LDO) guides municipal managers toward that balance. This research develops a model that seeks to find the balance of the allocation of public resources in Brazilian municipalities, considering the LDO as a parameter. For this using statistical techniques and multicriteria analysis as a first step in order to define allocation strategies, based on the technical aspects arising from the municipal manager. In a second step, presented in linear programming based optimization where the objective function is derived from the preference of the results of the manager and his staff. The statistical representation is presented to support multicriteria development in the definition of replacement rates through time series. The multicriteria analysis was structured by defining the criteria, alternatives and the application of UTASTAR methods to calculate replacement rates. After these initial settings, an application of linear programming was developed to find the optimal allocation of enforcement resources of the municipal budget. Data from the budget of a municipality in southwestern Paraná were studied in the application of the model and analysis of results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.