937 resultados para likelihood-based inference
Resumo:
Phylogenetic inference consist in the search of an evolutionary tree to explain the best way possible genealogical relationships of a set of species. Phylogenetic analysis has a large number of applications in areas such as biology, ecology, paleontology, etc. There are several criterias which has been defined in order to infer phylogenies, among which are the maximum parsimony and maximum likelihood. The first one tries to find the phylogenetic tree that minimizes the number of evolutionary steps needed to describe the evolutionary history among species, while the second tries to find the tree that has the highest probability of produce the observed data according to an evolutionary model. The search of a phylogenetic tree can be formulated as a multi-objective optimization problem, which aims to find trees which satisfy simultaneously (and as much as possible) both criteria of parsimony and likelihood. Due to the fact that these criteria are different there won't be a single optimal solution (a single tree), but a set of compromise solutions. The solutions of this set are called "Pareto Optimal". To find this solutions, evolutionary algorithms are being used with success nowadays.This algorithms are a family of techniques, which aren’t exact, inspired by the process of natural selection. They usually find great quality solutions in order to resolve convoluted optimization problems. The way this algorithms works is based on the handling of a set of trial solutions (trees in the phylogeny case) using operators, some of them exchanges information between solutions, simulating DNA crossing, and others apply aleatory modifications, simulating a mutation. The result of this algorithms is an approximation to the set of the “Pareto Optimal” which can be shown in a graph with in order that the expert in the problem (the biologist when we talk about inference) can choose the solution of the commitment which produces the higher interest. In the case of optimization multi-objective applied to phylogenetic inference, there is open source software tool, called MO-Phylogenetics, which is designed for the purpose of resolving inference problems with classic evolutionary algorithms and last generation algorithms. REFERENCES [1] C.A. Coello Coello, G.B. Lamont, D.A. van Veldhuizen. Evolutionary algorithms for solving multi-objective problems. Spring. Agosto 2007 [2] C. Zambrano-Vega, A.J. Nebro, J.F Aldana-Montes. MO-Phylogenetics: a phylogenetic inference software tool with multi-objective evolutionary metaheuristics. Methods in Ecology and Evolution. En prensa. Febrero 2016.
Resumo:
The Dirichlet process mixture model (DPMM) is a ubiquitous, flexible Bayesian nonparametric statistical model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibbs sampling are required. As a result, DPMM-based methods, which have considerable potential, are restricted to applications in which computational resources and time for inference is plentiful. For example, they would not be practical for digital signal processing on embedded hardware, where computational resources are at a serious premium. Here, we develop a simplified yet statistically rigorous approximate maximum a-posteriori (MAP) inference algorithm for DPMMs. This algorithm is as simple as DP-means clustering, solves the MAP problem as well as Gibbs sampling, while requiring only a fraction of the computational effort. (For freely available code that implements the MAP-DP algorithm for Gaussian mixtures see http://www.maxlittle.net/.) Unlike related small variance asymptotics (SVA), our method is non-degenerate and so inherits the “rich get richer” property of the Dirichlet process. It also retains a non-degenerate closed-form likelihood which enables out-of-sample calculations and the use of standard tools such as cross-validation. We illustrate the benefits of our algorithm on a range of examples and contrast it to variational, SVA and sampling approaches from both a computational complexity perspective as well as in terms of clustering performance. We demonstrate the wide applicabiity of our approach by presenting an approximate MAP inference method for the infinite hidden Markov model whose performance contrasts favorably with a recently proposed hybrid SVA approach. Similarly, we show how our algorithm can applied to a semiparametric mixed-effects regression model where the random effects distribution is modelled using an infinite mixture model, as used in longitudinal progression modelling in population health science. Finally, we propose directions for future research on approximate MAP inference in Bayesian nonparametrics.
Resumo:
In this paper, we consider Preference Inference based on a generalised form of Pareto order. Preference Inference aims at reasoning over an incomplete specification of user preferences. We focus on two problems. The Preference Deduction Problem (PDP) asks if another preference statement can be deduced (with certainty) from a set of given preference statements. The Preference Consistency Problem (PCP) asks if a set of given preference statements is consistent, i.e., the statements are not contradicting each other. Here, preference statements are direct comparisons between alternatives (strict and non-strict). It is assumed that a set of evaluation functions is known by which all alternatives can be rated. We consider Pareto models which induce order relations on the set of alternatives in a Pareto manner, i.e., one alternative is preferred to another only if it is preferred on every component of the model. We describe characterisations for deduction and consistency based on an analysis of the set of evaluation functions, and present algorithmic solutions and complexity results for PDP and PCP, based on Pareto models in general and for a special case. Furthermore, a comparison shows that the inference based on Pareto models is less cautious than some other types of well-known preference model.
Resumo:
New DNA-based predictive tests for physical characteristics and inference of ancestry are highly informative tools that are being increasingly used in forensic genetic analysis. Two eye colour prediction models: a Bayesian classifier - Snipper and a multinomial logistic regression (MLR) system for the Irisplex assay, have been described for the analysis of unadmixed European populations. Since multiple SNPs in combination contribute in varying degrees to eye colour predictability in Europeans, it is likely that these predictive tests will perform in different ways amongst admixed populations that have European co-ancestry, compared to unadmixed Europeans. In this study we examined 99 individuals from two admixed South American populations comparing eye colour versus ancestry in order to reveal a direct correlation of light eye colour phenotypes with European co-ancestry in admixed individuals. Additionally, eye colour prediction following six prediction models, using varying numbers of SNPs and based on Snipper and MLR, were applied to the study populations. Furthermore, patterns of eye colour prediction have been inferred for a set of publicly available admixed and globally distributed populations from the HGDP-CEPH panel and 1000 Genomes databases with a special emphasis on admixed American populations similar to those of the study samples.
Resumo:
In this work we study the problem of modeling identification of a population employing a discrete dynamic model based on the Richards growth model. The population is subjected to interventions due to consumption, such as hunting or farming animals. The model identification allows us to estimate the probability or the average time for a population number to reach a certain level. The parameter inference for these models are obtained with the use of the likelihood profile technique as developed in this paper. The identification method here developed can be applied to evaluate the productivity of animal husbandry or to evaluate the risk of extinction of autochthon populations. It is applied to data of the Brazilian beef cattle herd population, and the the population number to reach a certain goal level is investigated.
Resumo:
Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. Conclusion: A monophyletic assemblage strongly supported in all our phylogenetic analysis is herein defined as the Characidae and includes the characiform species lacking a supraorbital bone and with a derived position of the emergence of the hyoid artery from the anterior ceratohyal. To recognize this and several other monophyletic groups within characiforms we propose changes in the limits of several families to facilitate future studies in the Characiformes and particularly the Characidae. This work presents a new phylogenetic framework for a speciose and morphologically diverse group of freshwater fishes of significant ecological and evolutionary importance across the Neotropics and portions of Africa.
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.
Resumo:
In this paper an alternative approach to the one in Henze (1986) is proposed for deriving the odd moments of the skew-normal distribution considered in Azzalini (1985). The approach is based on a Pascal type triangle, which seems to greatly simplify moments computation. Moreover, it is shown that the likelihood equation for estimating the asymmetry parameter in such model is generated as orthogonal functions to the sample vector. As a consequence, conditions for a unique solution of the likelihood equation are established, which seem to hold in more general setting.
Resumo:
This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150 MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, 2 different approaches for estimating the directional wave spectrum based on a vessel`s 1st-order motions are discussed, and their predictions are compared to those provided by a wave buoy. The real-scale data were obtained in an extensive monitoring campaign based on an FPSO unit operating at Campos Basin, Brazil. Data included vessel motions, heading and tank loadings. Wave field information was obtained by means of a heave-pitch-roll buoy installed in the vicinity of the unit. `two of the methods most widely used for this kind of analysis are considered, one based on Bayesian statistical inference, the other consisting of a parametrical representation of the wave spectrum. The performance of both methods is compared, and their sensitivity to input parameters is discussed. This analysis complements a set of previous validations based on numerical and towing-tank results and allows for a preliminary evaluation of reliability when applying the methodology at full scale.
Resumo:
This paper presents the unique collection of additional features of Qu-Prolog, a variant of the Al programming language Prolog, and illustrates how they can be used for implementing DAI applications. By this we mean applications comprising communicating information servers, expert systems, or agents, with sophisticated reasoning capabilities and internal concurrency. Such an application exploits the key features of Qu-Prolog: support for the programming of sound non-clausal inference systems, multi-threading, and high level inter-thread message communication between Qu-Prolog query threads anywhere on the internet. The inter-thread communication uses email style symbolic names for threads, allowing easy construction of distributed applications using public names for threads. How threads react to received messages is specified by a disjunction of reaction rules which the thread periodically executes. A communications API allows smooth integration of components written in C, which to Qu-Prolog, look like remote query threads.
Resumo:
A two-component survival mixture model is proposed to analyse a set of ischaemic stroke-specific mortality data. The survival experience of stroke patients after index stroke may be described by a subpopulation of patients in the acute condition and another subpopulation of patients in the chronic phase. To adjust for the inherent correlation of observations due to random hospital effects, a mixture model of two survival functions with random effects is formulated. Assuming a Weibull hazard in both components, an EM algorithm is developed for the estimation of fixed effect parameters and variance components. A simulation study is conducted to assess the performance of the two-component survival mixture model estimators. Simulation results confirm the applicability of the proposed model in a small sample setting. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The small sample performance of Granger causality tests under different model dimensions, degree of cointegration, direction of causality, and system stability are presented. Two tests based on maximum likelihood estimation of error-correction models (LR and WALD) are compared to a Wald test based on multivariate least squares estimation of a modified VAR (MWALD). In large samples all test statistics perform well in terms of size and power. For smaller samples, the LR and WALD tests perform better than the MWALD test. Overall, the LR test outperforms the other two in terms of size and power in small samples.