963 resultados para integrating data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teachers’ emotional competences and well-being are fundamentally important to developing and maintaining positive relationships in the classroom, which can contribute to improving pedagogical action. References to several intervention programmes are found in the literature with the purpose of changing the practices, attitudes, and beliefs of teachers, who show evidence of a significant improvement in personal competences and school success. Therefore, an intervention with teachers integrating a broader line of research was carried out, involving parents and students as well. It consists of a programme which promotes personal (well-being and emotional intelligence) and professional (acquiring differentiated pedagogical strategies) competences over a period of six months, followed by a focus group to assess the contribution of an empowerment programme with the intention of promoting school success. The preliminary action-research study involved 10 teachers of two classes with students who show disruptive behaviour in the 7th year in a school in the central region of Portugal. The teachers, of both genders, are aged between 44 and 52, and belong to several recruitment groups. The main research question was: “To what extent does an intervention programme, intended for training, contribute to developing personal and professional competences in teachers of the 3rd cycle of basic education?” The teachers revealed a rather favourable view of their participation in the programme, considering that it helped them perceive some behaviours and practices which are less adjusted to their action in the classroom with these students (shouting, scolding, etc.). From the pretest to the posttest, statistically significant differences were found in assessing their own emotions and in their use. Signs of improvement in positive affections and satisfaction with life were also found, though with a marginal significance. The preliminary data in this empowerment programme for these educational agents points towards the importance of teachers’ awareness in what concerns their pedagogical action, as well as the need to change traditional pedagogical practices that contribute to discouraging students towards learning. The need to establish closer and systematic contact with the students and their families in order to meet their needs and expectations was also highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project aims at deepening the understanding of the molecular basis of the phenotypic heterogeneity of prion diseases. Prion diseases represent the first and clearest example of “protein misfolding diseases”, that are all the neurodegenerative diseases caused by the accumulation of misfolded proteins in the central nervous system. In the field of protein misfolding diseases, the term “strain” describes the heterogeneity observed among the same disease in the clinical and pathologic progression, biochemical features of the aggregated protein, conformational memory and pattern of lesions. In this work, the two most common strains of Creutzfeldt-Jakob Disease (CJD), named MM1 and VV2, were analyzed. This thesis investigates the strain paradigm with the production of new multi omic data, and, on such data, appropriate computational analysis combining bioinformatics, data science and statistical approaches was performed. In this work, genomic and transcriptomic profiling allowed an improved characterization of the molecular features of the two most common strains of CJD, identifying multiple possible genetic contributors to the disease and finding several shared impaired pathways between the VV2 strain and Parkinson Disease. On the epigenomic level, the tridimensional chromatin folding in peripheral immune cells of CJD patients at onset and of healthy controls was investigated with Hi-C. While being the first application of this very advanced technology in prion diseases and one of the first in general in neurobiology, this work found a significant and diffuse loss of genomic interactions in immune cells of CJD patients at disease onset, particularly in the PRNP locus, suggesting a possible impairment of chromatin conformation in the disease. The results of this project represent a novelty in the state of the art in this field, both from a biomedical and technological point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: WGS is increasingly used as a first-line diagnostic test for patients with rare genetic diseases such as neurodevelopmental disorders (NDD). Clinical applications require a robust infrastructure to support processing, storage and analysis of WGS data. The identification and interpretation of SVs from WGS data also needs to be improved. Finally, there is a need for a prioritization system that enables downstream clinical analysis and facilitates data interpretation. Here, we present the results of a clinical application of WGS in a cohort of patients with NDD. Methods: We developed highly portable workflows for processing WGS data, including alignment, quality control, and variant calling of SNVs and SVs. A benchmark analysis of state-of-the-art SV detection tools was performed to select the most accurate combination for SV calling. A gene-based prioritization system was also implemented to support variant interpretation. Results: Using a benchmark analysis, we selected the most accurate combination of tools to improve SV detection from WGS data and build a dedicated pipeline. Our workflows were used to process WGS data from 77 NDD patient-parent families. The prioritization system supported downstream analysis and enabled molecular diagnosis in 32% of patients, 25% of which were SVs and suggested a potential diagnosis in 20% of patients, requiring further investigation to achieve diagnostic certainty. Conclusion: Our data suggest that the integration of SNVs and SVs is a main factor that increases diagnostic yield by WGS and show that the adoption of a dedicated pipeline improves the process of variant detection and interpretation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging technologies are widely used in application fields such as natural sciences, engineering, medicine, and life sciences. A broad class of imaging problems reduces to solve ill-posed inverse problems (IPs). Traditional strategies to solve these ill-posed IPs rely on variational regularization methods, which are based on minimization of suitable energies, and make use of knowledge about the image formation model (forward operator) and prior knowledge on the solution, but lack in incorporating knowledge directly from data. On the other hand, the more recent learned approaches can easily learn the intricate statistics of images depending on a large set of data, but do not have a systematic method for incorporating prior knowledge about the image formation model. The main purpose of this thesis is to discuss data-driven image reconstruction methods which combine the benefits of these two different reconstruction strategies for the solution of highly nonlinear ill-posed inverse problems. Mathematical formulation and numerical approaches for image IPs, including linear as well as strongly nonlinear problems are described. More specifically we address the Electrical impedance Tomography (EIT) reconstruction problem by unrolling the regularized Gauss-Newton method and integrating the regularization learned by a data-adaptive neural network. Furthermore we investigate the solution of non-linear ill-posed IPs introducing a deep-PnP framework that integrates the graph convolutional denoiser into the proximal Gauss-Newton method with a practical application to the EIT, a recently introduced promising imaging technique. Efficient algorithms are then applied to the solution of the limited electrods problem in EIT, combining compressive sensing techniques and deep learning strategies. Finally, a transformer-based neural network architecture is adapted to restore the noisy solution of the Computed Tomography problem recovered using the filtered back-projection method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teeth, with their high mineralisation, incremental growth, and lack of remodelling, serve as biological archives that document an individual's development. This project aims to utilise the potential of teeth in bioarchaeological studies to achieve three primary objectives: 1) to investigate the application of histological and histochemical methods in reconstructing developmental bio-chronologies and early life histories; 2) to refine the temporal precision of isotopic analysis of dentine collagen by developing a novel protocol that integrates micro-sampling techniques with high-resolution histomorphometrics; and 3) to synthesise data from enamel and dentine for a comprehensive understanding of early life development and dietary transitions. This study adopts an integrated multidisciplinary bioarchaeological approach, conducting histomorphometric analysis on enamel and dentine across deciduous and permanent dentitions. It applies high-temporal resolution trace element analysis to enamel using LA-ICPMS and δ13C and δ15N isotope analyses through sequential micro-sampling to dentine of permanent teeth. Samples were selected from diverse archaeological contexts across the Italian peninsula, covering the Upper Palaeolithic, Copper Age, and Early Medieval periods, providing insight into diachronic variations in infant development and life history. Findings highlight the efficacy of histological and histochemical techniques in accurately determining growth rates, physiological stress, dietary shifts (particularly timing of weaning), and age at death in infant remains. The consistency and comparison between enamel and dentine underscores the enhanced insight obtained from integrating information from both tissues. Importantly, the newly proposed protocol significantly improves the temporal accuracy of dentine collagen analysis, facilitating precise chronological placement of the results over broad developmental associations. This study reaffirms the significance of teeth as valuable bioarchaeological instruments. By introducing and testing multidisciplinary methods, it provides deeper insights into early life history and cultural practices across diverse chronological contexts, highlighting the importance of advanced methodologies in extracting detailed, accurate, and nuanced information from past populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idea of Grid Computing originated in the nineties and found its concrete applications in contexts like the SETI@home project where a lot of computers (offered by volunteers) cooperated, performing distributed computations, inside the Grid environment analyzing radio signals trying to find extraterrestrial life. The Grid was composed of traditional personal computers but, with the emergence of the first mobile devices like Personal Digital Assistants (PDAs), researchers started theorizing the inclusion of mobile devices into Grid Computing; although impressive theoretical work was done, the idea was discarded due to the limitations (mainly technological) of mobile devices available at the time. Decades have passed, and now mobile devices are extremely more performant and numerous than before, leaving a great amount of resources available on mobile devices, such as smartphones and tablets, untapped. Here we propose a solution for performing distributed computations over a Grid Computing environment that utilizes both desktop and mobile devices, exploiting the resources from day-to-day mobile users that alternatively would end up unused. The work starts with an introduction on what Grid Computing is, the evolution of mobile devices, the idea of integrating such devices into the Grid and how to convince device owners to participate in the Grid. Then, the tone becomes more technical, starting with an explanation on how Grid Computing actually works, followed by the technical challenges of integrating mobile devices into the Grid. Next, the model, which constitutes the solution offered by this study, is explained, followed by a chapter regarding the realization of a prototype that proves the feasibility of distributed computations over a Grid composed by both mobile and desktop devices. To conclude future developments and ideas to improve this project are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obstructive sleep apnea syndrome has a high prevalence among adults. Cephalometric variables can be a valuable method for evaluating patients with this syndrome. To correlate cephalometric data with the apnea-hypopnea sleep index. We performed a retrospective and cross-sectional study that analyzed the cephalometric data of patients followed in the Sleep Disorders Outpatient Clinic of the Discipline of Otorhinolaryngology of a university hospital, from June 2007 to May 2012. Ninety-six patients were included, 45 men, and 51 women, with a mean age of 50.3 years. A total of 11 patients had snoring, 20 had mild apnea, 26 had moderate apnea, and 39 had severe apnea. The distance from the hyoid bone to the mandibular plane was the only variable that showed a statistically significant correlation with the apnea-hypopnea index. Cephalometric variables are useful tools for the understanding of obstructive sleep apnea syndrome. The distance from the hyoid bone to the mandibular plane showed a statistically significant correlation with the apnea-hypopnea index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the completeness and reliability of the Information System on Live Births (Sinasc) data. A cross-sectional analysis of the reliability and completeness of Sinasc's data was performed using a sample of Live Birth Certificate (LBC) from 2009, related to births from Campinas, Southeast Brazil. For data analysis, hospitals were grouped according to category of service (Unified National Health System, private or both), 600 LBCs were randomly selected and the data were collected in LBC-copies through mothers and newborns' hospital records and by telephone interviews. The completeness of LBCs was evaluated, calculating the percentage of blank fields, and the LBCs agreement comparing the originals with the copies was evaluated by Kappa and intraclass correlation coefficients. The percentage of completeness of LBCs ranged from 99.8%-100%. For the most items, the agreement was excellent. However, the agreement was acceptable for marital status, maternal education and newborn infants' race/color, low for prenatal visits and presence of birth defects, and very low for the number of deceased children. The results showed that the municipality Sinasc is reliable for most of the studied variables. Investments in training of the professionals are suggested in an attempt to improve system capacity to support planning and implementation of health activities for the benefit of maternal and child population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with obstructive sleep apnea syndrome usually present with changes in upper airway morphology and/or body fat distribution, which may occur throughout life and increase the severity of obstructive sleep apnea syndrome with age. To correlate cephalometric and anthropometric measures with obstructive sleep apnea syndrome severity in different age groups. A retrospective study of cephalometric and anthropometric measures of 102 patients with obstructive sleep apnea syndrome was analyzed. Patients were divided into three age groups (≥20 and <40 years, ≥40 and <60 years, and ≥60 years). Pearson's correlation was performed for these measures with the apnea-hypopnea index in the full sample, and subsequently by age group. The cephalometric measures MP-H (distance between the mandibular plane and the hyoid bone) and PNS-P (distance between the posterior nasal spine and the tip of the soft palate) and the neck and waist circumferences showed a statistically significant correlation with apnea-hypopnea index in both the full sample and in the ≥40 and <60 years age group. These variables did not show any significant correlation with the other two age groups (<40 and ≥60 years). Cephalometric measurements MP-H and PNS-P and cervical and waist circumferences correlated with obstructive sleep apnea syndrome severity in patients in the ≥40 and <60 age group.