800 resultados para gravitational lenses
Resumo:
Fluorine-rich prismatine, (square,Fe,Mg)(Mg,Al,Fe)(5)Al-4(Si,B,Al)(5)O-21(OH,F), with F/(OH+F) = 0.36-0.40 and hercynite are major constituents of a Fe-Al-B-rich lens in ultrahigh-temperature granulite-facies quartz-sillimanite-hypersthene-cordierite gneisses of the Eastern Ghats belt, Andhra Pradesh, India. Hemo-ilmenite. sapphirine, magnetite, biotite and sillimanite are subordinate. Lithium, Be and B are concentrated in prismatine (140 ppm Li, 170 ppm Be, and 2.8-3.0 wt.% B2O3). Another Fe-rich lens is dominantly magnetite, which encloses fine-grained zincian ferrohogbomite-2N2S, (Fe2+ Mg,Zn,Al)(6) (Al,Fe3+,Ti)(16)O-30(OH)(2), containing minor Ga2O3 (0.30-0.92 wt.%). Fe-Al-B-rich lenses with prismatine (or kornerupine) constitute a distinctive type of B-enrichment in granulite-facies rocks and have been reported from four other localities worldwide. A scenario involving a tourmaline-enriched lateritic precursor affected by dehydration melting is our preferred explanation for the origin of the Fe-Al-B-rich lenses at the five localities. Whole-rock analyses and field relationships at another of these localities, Bok se Puts, Namaqualand, South Africa, are consistent with this scenario. Under granulite-facies conditions, tourmaline would have broken down to give korner-upine-prismatine ( other borosilicates) plus a sodic melt containing H2O and B. Removal of this melt depleted the rock in Na and B, but the formation of ferromagnesian borosilicate phases in the restite prevented total loss of B.
Resumo:
Antihydrogen holds the promise to test, for the first time, the universality of freefall with a system composed entirely of antiparticles. The AEgIS experiment at CERN’s antiproton decelerator aims to measure the gravitational interaction between matter and antimatter by measuring the deflection of a beam of antihydrogen in the Earths gravitational field (g). The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malberg trap and are Stark accelerated towards a moir´e deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is the spatial precision of the position sensitive detector.We propose a novel free-fall detector based on a hybrid of two technologies: emulsion detectors, which have an intrinsic spatial resolution of 50 nm but no temporal information, and a silicon strip / scintillating fiber tracker to provide timing and positional information. In 2012 we tested emulsion films in vacuum with antiprotons from CERN’s antiproton decelerator. The annihilation vertices could be observed directly on the emulsion surface using the microscope facility available at the University of Bern. The annihilation vertices were successfully reconstructed with a resolution of 1–2 μmon the impact parameter. If such a precision can be realized in the final detector, Monte Carlo simulations suggest of order 500 antihydrogen annihilations will be sufficient to determine gwith a 1 % accuracy. This paper presents current research towards the development of this technology for use in the AEgIS apparatus and prospects for the realization of the final detector.
AEgIS Experiment: Measuring the acceleration g of the earth gravitational field on antihydrogen beam
Resumo:
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at 0T > 16 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.
Resumo:
PURPOSE To observe changes in fundus autofluorescence 2 years after implantation of blue light-filtering (yellow-tinted) and ultraviolet light-filtering (colorless) intraocular lenses (IOLs). SETTING Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan, and the Department of Ophthalmology, University of Bern, Bern, Switzerland. DESIGN Prospective comparative observational study. METHODS Patients were enrolled who had cataract surgery with implantation of a yellow-tinted or colorless IOL and for whom images were obtained on which the fundus autofluorescence was measurable using the Heidelberg Retina Angiogram 2 postoperatively. The fundus autofluorescence in the images was classified into 8 abnormal patterns based on the classification of the International Fundus Autofluorescence Classification Group, The presence of normal fundus autofluorescence, geographic atrophy, and wet age-related macular degeneration (AMD) also was recorded. The fundus findings at baseline and 2 years postoperatively were compared. RESULTS Fifty-two eyes with a yellow-tinted IOL and 79 eyes with a colorless IOL were included. Abnormal fundus autofluorescence did not develop or increase in the yellow-tinted IOL group; however, progressive abnormal fundus autofluorescence developed or increased in 12 eyes (15.2%) in the colorless IOL group (P = .0016). New drusen, geographic atrophy, and choroidal neovascularization were observed mainly in the colorless IOL group. The incidence of AMD was statistically significantly higher in the colorless IOL group (P = .042). CONCLUSIONS Two years after cataract surgery, significant differences were seen in the progression of abnormal fundus autofluorescence between the 2 groups. The incidence of AMD was lower in eyes with a yellow-tinted IOL. FINANCIAL DISCLOSURE No author has a financial or proprietary interest in any material or method mentioned.
Resumo:
Aims. We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 degrees) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20-45 degrees) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1m to 10m for the majority of them; and iii) high-slope terrains (45-90 degrees) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities.
Resumo:
Analyses of spatial structure of hydrophysical fields and its vertical evolution in the Northeast Atlantic in a layer from the surface down to 2-2.5 km are carried out based on results of measurements in a testing area (31°-36°N, 20°-26°W) southeast of the Azores in autumn 1993. A description of an anti-cyclonic lens (ACL) of Mediterranean water (MW), which was found in the eastern part of the testing area from data of sets of sequential surveys, is presented. Analysis of CTD and XBT measurements in an area west of the lens allows to conclude that despite some contraction of width of the Azores Current directed eastward (from 60-80 km to 50-60 km) its total eastward volume transport for a period of time from October to November does not vary much. It is shown that intermediate salinity maxima in the northern part of the testing area formed by advection of MW and meddy destruction weakens while intersecting the Azores frontal zone (AFZ) from north to south, displacing itself to larger depth, and increases in thickness. Analysis of data shows that the number of lenses observed within the selected area north of the AFZ is two times more than that observed south of it. North of the AFZ observed salinity maximum and local temperature maxima may be associated with accumulation of heat and salt because of the fact that the AFZ is not only a southern boundary of penetration of MW into the North Atlantic, but also is a "semitransparent" boundary for Mediterranean lenses.
Resumo:
Spreading pattern and mesoscale structure of Mediterranean water outflow in the eastern North Atlantic are studied on the basis of historical hydrographical records. Effect of bottom topography on Mediterranean water distribution is revealed. It is shown that the Mediterranean water outflow is divided into two streams after leaving the Gulf of Cadiz. These are northwestern and southwestern ones; the former is more intensive and spreads in more regular and continuous way. West of the Tejo (Tagus) Plateau it splits into three branches; the most intense of them keeps continuity up to 14°W. The less intensive southwestern stream passes south of the Gettysburg Bank and splits into two branches immediately after the Gulf of Cadiz. From 11°W, this stream has lenticular, intermittent character. West of 14°-15°W all Mediterranean water branches are represented mainly by isolated salty patches. As a result of historical data analysis in the 32°-44°N, 8°-22°W area, 30 Mediterranean water lenses have been found; 12 of them had not been previously mentioned in publications. A table of main parameters of Mediterranean water lenses is presented. It includes data of 108 observations from 1911 to 1993.
Resumo:
We have studied the thermo-mechanical response and atomistic degradation of final lenses in HiPER project. Final silica lenses are squares of 75 × 75 cm2 with a thickness of 5 cm. There are two scenarios where lenses are located at 8 m from the centre: •HiPER 4a, bunches of 100 shots (maximum 5 DT shots <48 MJ at ≈0.1 Hz). No blanket in chamber geometry. •HiPER 4b, continuous mode with shots ≈50 MJ at 10 Hz to generate 0.5 GW. Liquid metal blanket in chamber design.
Resumo:
The goal of the European laser fusion project, is to build an engineering facility for repetitive laser operation (HiPER 4a) and later a fusion reactor (HiPER 4b). A key aspect for laser fusion energy is the final optics. At the moment, it is based on silica transmission lenses located 8 m away from the chamber center. Lens lifetime depends on the irradiation conditions. We have used a 48 MJ shock ignition target for calculations. We have studied the thermo-mechanical effects of ions and X-rays on the lenses. Ions lead to lens melting and must therefore be mitigated. On the other hand, X-rays (~1% of the energy) does not produce either a significant temperature rise or detrimental stresses. Finally, we calculated the neutron flux and gamma dose rate on the lenses. Next, based on a simple model we studied the formation of color centers in the sample, which lead to optical absorption. Calculations show that simultaneous neutron and gamma irradiation does not significantly increase the optical absorption during the expected lifetime of the HiPER 4a facility. Under severe conditions (HiPER 4b), operation above 800 K or lens refreshing by thermal annealing treatments seem to assure adequate behavior.
Resumo:
Large-scale structure formation can be modeled as a nonlinear process that transfers energy from the largest scales to successively smaller scales until it is dissipated, in analogy with Kolmogorov’s cascade model of incompressible turbulence. However, cosmic turbulence is very compressible, and vorticity plays a secondary role in it. The simplest model of cosmic turbulence is the adhesion model, which can be studied perturbatively or adapting to it Kolmogorov’s non-perturbative approach to incompressible turbulence. This approach leads to observationally testable predictions, e.g., to the power-law exponent of the matter density two-point correlation function.
Resumo:
Using the relation proposed by Weinberg in 1972, combining quantum and cosmological parameters, we prove that the self gravitational potential energy of any fundamental particle is a quantum, with physical properties independent of the mass of the particle. It is a universal quantum of gravitational energy, and its physical properties depend only on the cosmological scale factor R and the physical constants ℏ and c. We propose a modification of the Weinberg’s relation, keeping the same numerical value, but substituting the cosmological parameter H/c by 1/R.
Resumo:
In this work, one-dimensional arrays of cylindrical adaptive liquid crystal lenses were manufactured and characterized; and test devices were filled with nematic liquid crystal. Comb interdigitated electrodes were designed as a mask pattern for the control electrode on the top glass substrates. A radial graded refractive index along each microsized lens was achieved by fabricating a layer of high resistance sheet deposited as a control electrode. These tunable lenses were switched by applying amplitude and frequency optimized waveforms on the control electrode. Phase profiles generated by the radial electric field distribution on each lens were measured by a convectional interferometric technique.
Resumo:
The Photovoltaic (PV) Module Reliability Workshop was held in Golden, Colorado, on Feb. 28?March 1, 2012. The objective was to share information to improve PV module reliability because such improvements reduce the cost of solar electricity and give investors confidence in the technology. NREL led the workshop, which was sponsored by the U.S. Department of Energy (DOE) Solar Energy Technologies Program (Solar Program).
Resumo:
Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.