917 resultados para giant panda
Resumo:
The Faraday rotation of an exciton in a GaAs quantum well (QW) embedded in a microcavity is investigated theoretically. The authors find that the Faraday rotation is enhanced remarkably by the microcavity, with a magnitude about two orders of magnitude larger than that of a single QW without microcavity. The Faraday rotation can be tuned by changing the incident angle of the pump and probe lights, or by varying the temperature or an external electric field. With an appropriate detuning between the cavity mode of the pump and probe lights, the Faraday rotation spectrum displays a strongly asymmetric line shape, which can easily be detected experimentally.
Resumo:
We deduce the eight-band effective-mass Hamiltonian model for a manganese-doped ZnSe quantum sphere in the presence of the magnetic field, including the interaction between the conduction and valence bands, the spin-orbit coupling within the valence bands, the intrinsic spin Zeeman splitting, and the sp-d exchange interaction between the carriers and magnetic ion in the mean-field approximation. The size dependence of the electron and hole energy levels as well as the giant Zeeman splitting energies are studied theoretically. We find that the hole giant Zeeman splitting energies decrease with the increasing radius, smaller than that in the bulk material, and are different for different J(z) states, which are caused by the quantum confinement effect. Because the quantum sphere restrains the excited Landau states and exciton states, in the experiments we can observe directly the Zeeman splitting of basic states. At low magnetic field, the total Zeeman splitting energy increases linearly with the increasing magnetic field and saturates at modest field which is in agreement with recent experimental results. Comparing to the undoped case, the Zeeman splitting energy is 445 times larger which provides us with wide freedom to tailor the electronic structure of DMS nanocrystals for technological applications.
Resumo:
Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic-field region the giant Zeeman splitting plays a dominant role that leads to a large negative magnetoconductivity. In the strong magnetic-field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s-d exchange interaction between the electron in the conduction band and the magnetic ions. The spin polarization increases rapidly with increasing magnetic field and the longitudinal current becomes spin polarized in strong magnetic field. The effect of spin-disorder scattering on MC is estimated numerically for low magnetic fields and found to be neglectible for our system.
Resumo:
It is predicted that the Goos-Hanchen displacement in the usual frustrated total internal reflection configuration can be resonantly enhanced greatly by coating a dielectric thin film onto the surface of the first prism when the angle of incidence is larger than the critical angle for total reflection at the prism-vacuum interface and is smaller than but close to the critical angle for total reflection at the prism-film interface. Theoretical analysis shows that the displacement of transmitted beam is about half the displacement of reflected beam in the thick limit of the vacuum gap between the two prisms. This is to be compared with the relation in the usual symmetric double-prism configuration that the displacement of transmitted beam is equal to the displacement of reflected beam. Numerical simulations for a Gaussian incident beam of waist width of 100 wavelengths reveal that when the dielectric thin film is of the order of wavelength in thickness, both the reflected and transmitted beams maintain well the shape of the incident beam in the thick limit of the vacuum gap. So largely enhanced displacements would lead to applications in optical devices and integrated optics. (c) 2007 American Institute of Physics.
Resumo:
We have observed periodic current and capacitance oscillations with increasing bias on doped GaAs/AlAs superlattices at a temperature of 77 K. The maximum of the observed capacitance is larger than usual geometric capacitances in superlattices, being comparable to the quantum capacitance of the two-dimensional (2D) electron system proposed by Luryi. A model based on well-to-well sequential resonant tunneling due to the movement of the boundary between the electric field domains in superlattice was proposed to explain the origin of the giant capacitance oscillations. It was demonstrated that the capacitance at the peaks of capacitance-voltage (C-V) characteristics reflects the quantum capacitance of the space-charge region at the boundary between the domains (a novel 2D electron system).
Resumo:
The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.
Resumo:
We study the relationship between the properties of the isovector giant dipole resonance of finite nuclei and the symmetry energy in the framework of the relativistic mean field theory with six different parameter sets of nonlinear effective Lagrangian. A strong linear correlation of excited energies of the dipole resonance in finite nuclei and symmetry energy at and below the saturation density is found. This linear correlation leads to the symmetry energy at the saturation density at the interval 33.0MeV <= S(po) <= 37.0 MeV. The comparison to the present experimental data in the soft dipole mode of (132) Sn constrains approximately the symmetry energy at p = 0.1 fm(-3) at the interval 21.2MeV similar to 22.5 MeV. It is proposed that a precise measurement of the soft dipole mode in neutron rich nuclei could set up an important constraint on the equation of state for asymmetric nuclear matter.
Resumo:
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.
Resumo:
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS-PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30-60 nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Silicateins, members of the cathepsin L family, are enzymes that have been shown to be involved in the biosynthesis/condensation of biosilica in spicules from Demospongiae (phylum Porifera), e. g. Tethya aurantium and Suberites domuncula. The class Hexactinellida also forms spicules from this inorganic material. This class of sponges includes species that form the largest biogenic silica structures on earth. The giant basal spicules from the hexactinellids Monorhaphis chuni and Monorhaphis intermedia can reach lengths of up to 3 m and diameters of 10 mm. The giant spicules as well as the tauactines consist of a biosilica shell that surrounds the axial canal, which harbours the axial filament, in regular concentric, lamellar layers, suggesting an appositional growth of the spicules. The lamellae contain 27 kDa proteins, which undergo post-translational modification (phosphorylation), while total spicule extracts contain additional 70 kDa proteins. The 27 kDa proteins cross-reacted with anti-silicatein antibodies. The extracts of spicules from the hexactinellid Monorhaphis displayed proteolytic activity like the silicateins from the demosponge S. domuncula. Since the proteolytic activity in spicule extracts from both classes of sponge could be sensitively inhibited by E-64 (a specific cysteine proteinase inhibitor), we used a labelled E-64 sample as a probe to identify the protein that bound to this inhibitor on a blot. The experiments revealed that the labelled E-64 selectively recognized the 27 kDa protein. Our data strongly suggest that silicatein(-related) molecules are also present in Hexactinellida. These new results are considered to also be of impact for applied biotechnological studies.