208 resultados para géométrie symplectique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les façons d'aborder l'étude du spectre du laplacien sont multiples. Ce mémoire se concentre sur les partitions spectrales optimales de domaines planaires. Plus précisément, lorsque nous imposons des conditions aux limites de Dirichlet, nous cherchons à trouver la ou les partitions qui réalisent l'infimum (sur l'ensemble des partitions à un certain nombre de composantes) du maximum de la première valeur propre du laplacien sur tous ses sous-domaines. Dans les dernières années, cette question a été activement étudiée par B. Helffer, T. Hoffmann-Ostenhof, S. Terracini et leurs collaborateurs, qui ont obtenu plusieurs résultats analytiques et numériques importants. Dans ce mémoire, nous proposons un problème analogue, mais pour des conditions aux limites de Neumann cette fois. Dans ce contexte, nous nous intéressons aux partitions spectrales maximales plutôt que minimales. Nous cherchons alors à vérifier le maximum sur toutes les $k$-partitions possibles du minimum de la première valeur propre non nulle de chacune des composantes. Cette question s'avère plus difficile que sa semblable dans la mesure où plusieurs propriétés des valeurs propres de Dirichlet, telles que la monotonicité par rapport au domaine, ne tiennent plus. Néanmoins, quelques résultats sont obtenus pour des 2-partitions de domaines symétriques et des partitions spécifiques sont trouvées analytiquement pour des domaines rectangulaires. En outre, des propriétés générales des partitions spectrales optimales et des problèmes ouverts sont abordés.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depuis la révolution industrielle, l’évolution de la technologie bouleverse le monde de la fabrication. Aujourd'hui, de nouvelles technologies telles que le prototypage rapide font une percée dans des domaines comme celui de la fabrication de bijoux, appartenant jadis à l'artisanat et en bouscule les traditions par l'introduction de méthodes plus rapides et plus faciles. Cette recherche vise à répondre aux deux questions suivantes : - ‘En quoi le prototypage rapide influence-t-il la pratique de fabrication de bijoux?’ - ‘En quoi influence-t-il de potentiels acheteurs dans leur appréciation du bijou?’ L' approche consiste en une collecte de données faite au cours de trois entretiens avec différents bijoutiers et une rencontre de deux groupes de discussion composés de consommateurs potentiels. Les résultats ont révélé l’utilité du prototypage rapide pour surmonter un certain nombre d'obstacles inhérents au fait-main, tel que dans sa géométrie, sa commercialisation, et sa finesse de détails. Cependant, il se crée une distance entre la main du bijoutier et l'objet, changeant ainsi la nature de la pratique. Cette technologie est perçue comme un moyen moins authentique car la machine rappelle la production de masse et la possibilité de reproduction en série détruit la notion d’unicité du bijou, en réduisant ainsi sa charge émotionnelle. Cette recherche propose une meilleure compréhension de l'utilisation du prototypage rapide et de ses conséquences dans la fabrication de bijoux. Peut-être ouvrira-t-elle la voie à une recherche visant un meilleur mariage entre cette technique et les méthodes traditionnelles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'objectif de ce mémoire est de démontrer certaines propriétés géométriques des fonctions propres de l'oscillateur harmonique quantique. Nous étudierons les domaines nodaux, c'est-à-dire les composantes connexes du complément de l'ensemble nodal. Supposons que les valeurs propres ont été ordonnées en ordre croissant. Selon un théorème fondamental dû à Courant, une fonction propre associée à la $n$-ième valeur propre ne peut avoir plus de $n$ domaines nodaux. Ce résultat a été prouvé initialement pour le laplacien de Dirichlet sur un domaine borné mais il est aussi vrai pour l'oscillateur harmonique quantique isotrope. Le théorème a été amélioré par Pleijel en 1956 pour le laplacien de Dirichlet. En effet, on peut donner un résultat asymptotique plus fort pour le nombre de domaines nodaux lorsque les valeurs propres tendent vers l'infini. Dans ce mémoire, nous prouvons un résultat du même type pour l'oscillateur harmonique quantique isotrope. Pour ce faire, nous utiliserons une combinaison d'outils classiques de la géométrie spectrale (dont certains ont été utilisés dans la preuve originale de Pleijel) et de plusieurs nouvelles idées, notamment l'application de certaines techniques tirées de la géométrie algébrique et l'étude des domaines nodaux non-bornés.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nous nous proposons d’examiner et de comparer les analyses de Maurice Merleau-Ponty et d’Erwin Panofsky sur la question de la perspective linéaire. Merleau-Ponty, dans le sillage des analyses de Panofsky, soutient la thèse selon laquelle la perspective linéaire est non seulement une technique picturale qui nous présente une vision et une interprétation de l’espace et, plus généralement, du monde se constituant en rupture avec la perception naturelle, mais une « construction symbolique » qui nous fait proprement voir et concevoir le monde d’après les principes de la géométrie euclidienne. Quoiqu’ils partagent la même interprétation historique et symbolique de la perspective, Merleau-Ponty et Panofsky diffèrent pourtant quant à la signification philosophique qu’ils lui donnent. Alors que pour Panofsky la perspective témoigne de la vérité indépassable du criticisme kantien, elle est l’expression chez Merleau-Ponty d’une interrogation ontologique sur la perception irréductible à la conception de l’espace de la philosophie moderne.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La recherche de la formation des citoyens critiques et participatifs, dans le travail pédagogique avec les jeunes et les adultes, a besoin d un entraînement pédagogique qui va au delà de l attitude traditionnelle d'apprendre avec des méthodes mécaniques et arbitraires qui, en insistant excessivement sur l image du professeur, donnent priorité à l'enseignement, au détriment de l apprentissage. Dans ce sens, la présente étude, cherchant la possibilité de réalisation d'un travail alternatif pour l'enseignement des Mathématiques, dans une perspective transdisciplinaire, dans le sens de développer l apprentissage significatif des étudiants jeunes et adultes du Projet Croire, présente les résultats d'une recherche-intervention qui a utilisé les lettres du tarot comme ressource didactique en salle de classe. On prétend, avec cela, montrer cet instrument comme facilité d apprentissage de contenus des Mathématiques comme systèmes de numération, nombres entiers et géométrie, en amenant les Mathématiques dans une perspective historique et culturelle et donnant un traitement global à l'acte complexe d'apprendre. Dans ce travail, le jeune étudiant et l étudiant adulte est pris comme individu concret, prenant en considération les aspects cognitifs et les aspects d attitude de son apprentissage, ce qui est favorisé par la nature des lettres du tarot et par la compréhension adoptée, des mathématiques comme système symbolique

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research partly motivated by Lewis Carroll's Euclid and his modern rivals (1879) portuguese translation, this paper presents some hermeneutical remarks taken as necessary to understand the context in which such book was produced. The paper focuses particularly on education, in general, and on the teaching of mathematics and Geometry in victorian England.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante siglos, la geometría y el álgebra se fueron desarrollando como disciplinas matemáticas diferentes. El filósofo y matemático francés René Descartes, publicó en el año 1637 su tratado La Géométrie en el que introdujo un método para unir esas dos ramas de la matemática, llamado Geometría Analítica, basado en el uso de sistemas coordenados, por medio de los cuales, los procesos algebraicos se pueden aplicar al estudio de la geometría. La Geometría Analítica permite hallar y estudiar los lugares geométricos de forma sistemática y general. Provee de métodos para transformar los problemas geométricos en problemas algebraicos, resolverlos analíticamente e interpretar geométricamente los resultados. Geometría Analítica para Ciencias e Ingenierías, es un texto cuyo principal objetivo es acompañar el proceso de enseñanza y aprendizaje de un curso de Geometría analítica de nivel universitario de grado, promoviendo en el estudiante el desarrollo de habilidades de observación, comparación, análisis, síntesis e integración de conceptos tanto de la Geometría Analítica plana como de la espacial. Los contenidos que se estudian en este texto tienen gran variedad de aplicaciones en investigaciones matemáticas, en astronomía, física, química, biología, ingeniería, economía, entre otros. El texto se encuentra dividido en 5 capítulos, cada uno de los cuales cuenta con el desarrollo de contenidos teóricos, ejercicios y problemas de aplicación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

t. 1. Algèbre. Calcul intégral. 1898. xv, 471, [1] p.--t. 2. Géométrie. 1905. [4], 715, [1] p. diagrs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Algèbre, ligne droite et plan, trigonométrie, analyse, applications géométriques--II. Géométrie analytique: courbes et surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"A table of logarithms of numbers from 1 to 10,000": p. 1-62 (last group)